Skip to main content Accessibility help

Structural changes and thermal expansion behavior of ultrafine titanium powders during compaction and heating

  • B.B. Panigrahi (a1) and M.M. Godkhindi (a1)


This work represents an attempt to understand the nature of micron and attrition milled nano-sized titanium powders on two different aspects, i.e., pressure-induced phase change and thermal expansion. Contraction in the volume of unit cell in terms of decrease in interplaner spacing (d) has been observed in both powders and tends to restore upon annealing. At a given pressure, nano titanium shows a smaller decrease in d relative to micron titanium. The stress analysis of the compacts indicates higher value of residual stresses and deformations in micron powder than in nano powder. The dilatometric study reveals, first, the release of internal stresses and entrapped gases causes huge expansion in nanopowder compacts during heating. Secondly, there is no significant difference in the expansion coefficients of sintered micro- and nanocrystalline titanium samples.


Corresponding author

a)Address all correspondence to this author. e-mail:


Hide All
1.Jamieson, J.C.: Crystal structures of titanium, zirconium and hafnium at high pressures. Science 140, 72 (1963).
2.Singh, A.K., Mohan, M. and Divakar, C.: The kinetics of pressure-induced α→ω transformation in Ti. J. Appl. Phys. 53, 1221 (1982).
3.Xia, H., Parthasarathy, G., Luo, H., Vohra, Y.K. and Rouff, A.L.: Crystal structures of group IVA metals at ultrahigh pressures. Phys. Rev. B 42, 6736 (1990).
4.Greeff, C.W., Trinkle, D.R. and Albers, R.C.: Shock-induced α-ω transition in titanium. J. Appl. Phys. 90, 2221 (2001).
5.Barrett, C.S.: Structure of Metals: Crystallographic Methods, Principles and Data, 2nd ed. (McGraw–Hill, New York, 1952), p. 538.
6.Bundy, F.P.: Pressure-temperature phase diagram of iron to 200 kbar, 900°C. J. Appl. Phys. 36, 616 (1965).
7.Liu, H., Secco, R.A., Imanaka, N. and Adachi, G.: X-ray diffraction study of pressure- induced amorphization in Lu2(WO4)3. Solid State Commun. 121, 177 (2002).
8.Pascarelli, S., Aquilanti, G., Munsch, P. and Itié, J.P.: High pressure and high temperature x-ray diffraction study of InAs. Nucl. Instrum. Meth. 200, 439 (2003).
9.Wang, Z., Saxena, S.K., Pischedda, V., Liermann, H.P. and Zha, C.S.: X-ray diffraction and raman spectroscopic study of nanocrystalline CuO under pressures. J. Phys.: Condens. Matter 13, 8317 (2001).
10.Dominguez, O., Phillippot, M. and Bigot, J.: The relationship between consolidation behavior and particle size in Fe nanometric powders. Scripta Mater. 32, 13 (1995).
11.Zhao, M., Li, X., Wang, Z., Song, L., Xiao, L. and Xu, B.: The effect of pressure on the specific surface area and density of nanocrystalline ceramic powders. Nanostruct. Mater. 1, 379 (1992).
12.Parida, N., Pani, B.B. and Kumar, B. Ravi: Acoustic emission assisted compaction studies on iron, iron-aluminium and iron-cast iron powders. Scripta Mater. 37, 1659 (1997).
13.Cullity, B.D.: Elements of X-ray Diffraction (Addison Wesley, Boston, MA 1956).
14.Birringer, R.: Nanocrystalline materials. Mater. Sci. Eng. A 117, 33 (1989).
15.Lu, K.: The thermal instability of nanocrystalline Ni-P materials with different grain sizes. Nanostruct. Mater. 2, 643 (1993).
16.Sui, M.L. and Lu, K.: Themal expansion behaviour of nanocrystalline Ni-P alloys of different grain sizes. Nanostruct. Mater. 6, 651 (1995).
17.Zhang, H. and Mitchell, B.S.: Thermal expansion behavior and microstructure in bulk nanocrystalline selenium by thermomechanical analysis. Mater. Sci. Eng. A 270, 237 (1999).
18.Zhao, Y.H., Sheng, H.W. and Lu, K.: Microstructure evolution and thermal properties in nanocrystalline Fe during mechanical attrition. Acta Mater. 49, 365 (2001).
19.Qian, L.H., Wang, S.C., Zhao, Y.H. and Lu, K.: Microstrain effect on thermal properties of nanocrystalline Cu. Acta Mater. 50, 3425 (2002).
20.Eastman, J.A., Fitzsimmons, M.R., Thompson, L.J., Lawson, A.C. and Robinson, R.A.: Diffraction studies of the thermal properties of nanocrystalline Pd and Cr. Nanostruct. Mater. 1, 465 (1992).
21.Turi, T. and Erb, U.: Thermal expansion and heat capacity of porosity-free nanocrystalline materials. Mater. Sci. Eng. A 204, 34 (1995).
22. PDF-2 Data Base, PCPDFWIN (2.0), JCPDS (International Centre for Diffraction Data, Newtown Square, PA, 1998).
23.Donachie, M.J.: Titanium: A Technical Guide (ASM International, Materials Park, OH, 2000).
24.Buch, A.: Pure Metals Properties: A Scientific Technical Handbook (ASM International, Materials Park, OH, and Freund Publishing Home Ltd., London, U.K., 1999), p. 15.


Related content

Powered by UNSILO

Structural changes and thermal expansion behavior of ultrafine titanium powders during compaction and heating

  • B.B. Panigrahi (a1) and M.M. Godkhindi (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.