Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-23T10:36:09.927Z Has data issue: false hasContentIssue false

Structural and optical properties of nanocrystalline ZnO thin films derived from clear emulsion of monodispersed ZnO nanocrystals

Published online by Cambridge University Press:  31 January 2011

Keigo Suzuki*
Affiliation:
Murata Manufacturing Co., Ltd., Nagaokakyo-shi, Kyoto 617-8555, Japan
Hiroshi Takagi
Affiliation:
Murata Manufacturing Co., Ltd., Nagaokakyo-shi, Kyoto 617-8555, Japan
*
a) Address all correspondence to this author. e-mail: ksuzuki@murata.co.jp
Get access

Abstract

In this study, the dense films of well-crystallized ZnO nanocrystals were successfully prepared by direct spin-coating of the colloidal solution of ZnO nanoparticles derived from the microemulsion method. The average grain sizes in the films were reasonably controlled in the range from 6.5 to 34.3 nm by simply changing the annealing temperatures. The increase in band gap energies was found in the size region less than 13.3 nm, finally resulting in 3.47 eV for the average size of 6.5 nm. The photoluminescence spectra at room temperature showed intense ultraviolet (UV) emission with faint green luminescence. The Stokes shifts of the films were estimated to be one or two orders of magnitude smaller than those of the conventional ZnO nanocrystalline films, suggesting the well crystallization and slight amounts of lattice defects in the ZnO nanoparticles. These excellent features may be favorable to make high-performance optical application such as UV emitting devices.

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Bahnemann, D.W., Kormann, C., and Hoffmann, M.R.: Preparation and characterization of quantum size zinc oxide: A detailed spectroscopic study. J. Phys. Chem. 91, 3789 (1987).Google Scholar
2Chang, H.J., Lu, C.Z., Wang, Y., Son, C-S., Kim, S-H., Kim, Y-H., and Choi, I-H.: Optical properties of ZnO nanocrystals synthesized by using sol-gel method. J. Korean Phys. Soc. 45, 959 (2004).Google Scholar
3Guo, L., Yang, S., Yang, C., Yu, P., Wang, J., Ge, W., and Wong, G.K.L.: Highly monodisperse polymer-capped ZnO nanoparticles: Preparation and optical properties. Appl. Phys. Lett. 76, 2901 (2000).Google Scholar
4Kim, K.K., Koguchi, N., Ok, Y-W., Seong, T-Y., and Park, S-J.: Fabrication of ZnO quantum dots embedded in an amorphous oxide layer. Appl. Phys. Lett. 84, 3810 (2004).CrossRefGoogle Scholar
5Koch, U., Fojtik, A., Weller, H., and Henglein, A.: Photochemistry of semiconductor colloids. Preparation of extremely small ZnO particles, fluorescence phenomena and size quantization effects. Chem. Phys. Lett. 122, 507 (1985).Google Scholar
6Lu, J.G., Ye, Z.Z., Huang, J.Y., Zhu, L.P., Zhao, B.H., Wang, Z.L., and Fujita, Sz.: ZnO quantum dots synthesized by a vapor phase transport process. Appl. Phys. Lett. 88, 063110 (2006).Google Scholar
7Lu, J.G., Ye, Z.Z., Zhang, Y.Z., Liang, Q.L., Fujita, Sz., and Wang, Z.L.: Self-assembled ZnO quantum dots with tunable optical properties. Appl. Phys. Lett. 89, 023122 (2006).Google Scholar
8Mahamuni, S., Borgohain, K., Bendre, B.S., Leppert, V.J., and Risbud, S.H.: Spectroscopic and structural characterization of electrochemically grown ZnO quantum dots. J. Appl. Phys. 85, 2861 (1999).Google Scholar
9Monticone, S., Tufeu, R., and Kanaev, A.V.: Complex nature of the UV and visible fluorescence of colloidal ZnO nanoparticles. J. Phys. Chem. B 102, 2854 (1998).CrossRefGoogle ScholarPubMed
10Spanhel, L. and Anderson, M.A.: Semiconductor clusters in the solgel process: Quantized aggregation, gelation, and crystal growth in concentrated ZnO colloids. J. Am. Chem. Soc. 113, 2826 (1991).CrossRefGoogle Scholar
11Suzuki, K., Inoguchi, M., Kageyama, K., Takagi, H., and Sakabe, Y.: Well-crystallized zinc oxide quantum dots with narrow size distribution. J. Nanopart. Res. (2008, DOI: 10.1007/s11051-008-9521-x, in press).Google Scholar
12Yang, C.L., Wang, J.N., Ge, W.K., Guo, L., Yang, S.H., and Shen, D.Z.: Enhanced ultraviolet emission and optical properties in polyvinyl pyrrolidone surface modified ZnO quantum dots. J. Appl. Phys. 90, 4489 (2001).Google Scholar
13Berber, M., Bulto, V., Kliβ, R., and Hahn, H.: Transparent nanocrystalline ZnO films prepared by spin coating. Scr. Mater. 53, 547 (2005).Google Scholar
14Cui, M.L., Wu, X.M., Zhuge, L.J., and Meng, Y.D.: Effects of annealing temperature on the structure and photoluminescence properties of ZnO films. Vacuum 81, 899 (2007).CrossRefGoogle Scholar
15Hirano, S., Masuya, K., and Kuwabara, M.: Multi-nucleation-based formation of oriented zinc oxide microcrystals and films in aqueous solutions. J. Phys. Chem. B 108, 4576 (2004).CrossRefGoogle Scholar
16Peiro, A.M.Domingo, C., Peral, J., Domenech, X., Vigil, E., Hernández-Fenollosa, M.A., Mollar, M., Marí, B., and Ayllón, J.A.: Nanostructured zinc oxide films grown from microwave activated aqueous solutions. Thin Solid Films 483, 79 (2005).Google Scholar
17Perriére, J., Millon, E., Seiler, W., Boulmer-Leborgne, C., Craciun, B., Albert, O., Loulergue, J.C., and Etchepare, J.: Comparison between ZnO films grown by femtosecond and nanosecond laser ablation. J. Appl. Phys. 91, 690 (2002).Google Scholar
18Studenikin, S.A., Golego, N., and Cocivera, M.: Fabrication of green and orange photoluminescent, undoped ZnO films using spray pyrolysis. J. Appl. Phys. 84, 2287 (1998).CrossRefGoogle Scholar
19Tang, Z.K., Kawasaki, M., Ohtomo, A., Koinuma, H., and Segawa, Y.: Self-assembled ZnO nano-crystals and exciton lasing at room temperature. J. Cryst. Growth 287, 169 (2006).Google Scholar
20Zhang, L.Z. and Tang, G.Q.: Preparation, characterization and optical properties of nanostructured ZnO thin films. Opt. Mater. 27, 217 (2004).CrossRefGoogle Scholar
21Zhang, B.P., Liu, C.Y., Segawa, Y., Kashiwaba, Y., and Haga, K.: Free excitonic transition of zinc oxide nanocrystallite films formed on amorphous substrates by metalorganic chemical vapor deposition. Thin Solid Films 474, 165 (2005).Google Scholar
22Zhang, L., Chen, Z., Tang, Y., and Jia, Z.: Low temperature cathodic electrodeposition of nanocrystalline zinc oxide thin films. Thin Solid Films 492, 24 (2005).Google Scholar
23Cao, H., Zhao, Y.G., Ho, S.T., Seelig, E.W., Wang, Q.H., and Chang, R.P.H.: Random laser action in semiconductor powder. Phys. Rev. Lett. 82, 2278 (1999).Google Scholar
24Zhang, Q., Zhang, Y., Yu, K., and Zhu, Z.: Photoluminescence and field-emission characteristics of ZnO nanowires synthesized by two-step method. Vacuum 82, 30 (2008).CrossRefGoogle Scholar
25Bando, K., Sawabe, T., Asaka, K., and Masumoto, Y.: Room-temperature excitonic lasing from ZnO single nanobelts. J. Lumin. 108, 385 (2004).Google Scholar
26Chen, Zn. and Gao, L.: A facile route to ZnO nanorod arrays using wet chemical method. J. Cryst. Growth 293, 522 (2006).CrossRefGoogle Scholar
27Prasad, V., D'Souza, C., Yadav, D., Shaikh, A.J., and Vigneshwaran, N.: Spectroscopic characterization of zinc oxide nanorods synthesized by solid-state reaction. Spectrochim. Acta, Part A 65, 173 (2006).CrossRefGoogle ScholarPubMed
28Inoguchi, M., Suzuki, K., Kageyama, K., Takagi, H., and Sakabe, Y.: Monodispersed and well-crystallized zinc oxide nanoparticles fabricated by microemulsion method. J. Am. Ceram. Soc. 91, 3850 (2008).Google Scholar
29Watanabe, Y. and Yanagitani, T.: Thin film producing method. U.S., Patent No. 20080118661, May 22, 2008.Google Scholar
30Atkinson, A. and Guppy, R.M.: Mechanical stability of sol-gel films. J. Mater. Sci. 26, 3869 (1991).Google Scholar
31Park, Y.S. and Reynolds, D.C.: Growth of ZnO single crystals. J. Appl. Phys. 38, 756 (1967).Google Scholar
32Ou, Q., Matsuda, T., Mesko, M., Ogino, A., and Nagatsu, M.: Cathodluminescence property of ZnO nanophosphors prepared by laser ablation. Jpn. J. Appl. Phys. 47, 389 (2008).Google Scholar