Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-05-04T23:12:23.372Z Has data issue: false hasContentIssue false

Structural and electrical properties of strontium barium niobate thin films crystallized by conventional furnace and rapid-thermal annealing process

Published online by Cambridge University Press:  31 January 2011

R. G. Mendes
Affiliation:
Universidade Federal de Saõ Carlos, Departamento de Física, Grupo de Cerâmicas Ferroelétricas, Caixa Postal 676, 13565–670 Saõ Carlos, SP, Brazil
E. B. Araújo*
Affiliation:
Universidade Estadual Paulista, Departamento de Física e Química, Grupo de Vidros e Cerâmicas, Caixa Postal 31, 15385–000 Ilha Solteira, SP, Brazil
J. A. Eiras
Affiliation:
Universidade Federal de Saõ Carlos, Departamento de Física, Grupo de Cerâmicas Ferroelétricas, Caixa Postal 676, 13565–670 Saõ Carlos, SP, Brazil
*
a)Address all correspondence to this author.eudes@fqm.feis.unesp.br
Get access

Abstract

Strontium barium niobate (SBN) thin films were crystallized by conventional electric furnace annealing and by rapid-thermal annealing (RTA) at different temperatures. The average grain size of films was 70 nm and thickness around 500 nm. Using x-ray diffraction, we identified the presence of polycrystalline SBN phase for films annealed from 500 to 700 °C in both cases. Phases such as SrNb2O6 and BaNb2O6 were predominantly crystallized in films annealed at 500 °C, disappearing at higher temperatures. Dielectric and ferroelectric parameters obtained from films crystallized by conventional furnace and RTA presented essentially the same values.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Magneli, A., Ark. Kemi 1, 213 (1949).Google Scholar
2Nishiwaki, S., Takahashi, J., Kodaira, K., and Kishi, M., Jpn. J. Appl. Phys. 35, 5137 (1996).Google Scholar
3Glass, A.M., J. Appl. Phys. 40, 4699 (1969).CrossRefGoogle Scholar
4Zook, J.D. and Liu, S.T., J. Appl. Phys. 49, 4604 (1978).CrossRefGoogle Scholar
5Horowitz, M., Bekker, A., and Fischer, B., Appl. Phys. Lett. 62, 2619 (1993).CrossRefGoogle Scholar
6Xu, Y., Chen, C.J., Xu, R., and Mackenzie, J.D., Phys. Rev. B 44, 35 (1991).CrossRefGoogle Scholar
7Thoöny, S.S., Youden, K.E., Harris, J.S. Jr., and Hesselink, L., Appl. Phys. Lett. 65, 2018 (1994).CrossRefGoogle Scholar
8Lee, M. and Feigelson, R.S., J. Cryst. Growth 180, 220 (1997).CrossRefGoogle Scholar
9Mendes, R.G., Araújo, E.B., Klein, H., and Eiras, J.A., J. Mater. Sci. Lett.18, 1941 (1999).Google Scholar
10Lessing, P.A., Ceram. Bull. 68, 1002 (1989).Google Scholar
11Neurgaonkar, R.R., Hall, W.F., Oliver, J.R., Ho, W.W., and Cory, W.K., Ferroelectrics 87, 167 (1988).CrossRefGoogle Scholar
12Sakamoto, W., Yogo, T., Kikuta, K., Ogiso, K., Kawase, A., and Hirano, S., J. Am. Ceram. Soc. 79, 2283 (1996).CrossRefGoogle Scholar
13Chen, C.J., Xu, Y., Xu, R., and Mackenzie, J.D., J. Appl. Phys. 69, 1763 (1991).CrossRefGoogle Scholar
14Bell, J.M., Knight, P.C., and Johnston, G.R., in Ferroelectric Thin Films: Synthesis and Basic Properties, edited by Paz de Araujo, C., Scott, J.F., and Taylor, G.W. (Gordon and Breach Science Publish-ers, Amsterdam, The Netherlands, 1996), p. 116.Google Scholar