Skip to main content Accessibility help

Strontium aluminum tantalum oxide and strontium aluminum niobium oxide as potential substrates for HTSC thin films

  • Ruyan Guo (a1), A.S. Bhalla (a1), Jyh Sheen (a1), F.W. Ainger (a1), S. Erdei (a1), E.C. Subbarao (a1) and L.E. Cross (a1)...


Single crystal fibers of A(B11/2B21/2)O3 perovskites type with compositions Sr(Al1/2Ta1/2)O3 (SAT) and Sr(Al1/2Nb1/2)O3 (SAN) were grown successfully for the first time, using a laser-heated pedestal growth (LHPG) technique. Their crystallographic structures were found to be simple cubic perovskite with lattice parameters a = 3.8952 Å (SAT) and a = 3.8995 Å (SAN) that are close lattice matches to the YBCO superconductors. No structural phase transitions or twins have been found, and the average coefficients of the thermal expansion match well with the YBCO superconductor materials. We report that SAT is one of the most promising substrates to date for the epitaxial growth of HTSC thin films suitable for microwave device applications as it has low dielectric constants (K ∼ 11–12, at 100 Hz–10 GHz and 300 K) and low dielectric loss (∼4 × 10−5 at 10 kHz and 80 K), together with lattice parameter matching, thermal expansion matching, and chemical compatibility with the high Tc superconductors (YBCO).



Hide All
1Guo, R., Bhalla, A. S., Cross, L. E., and Roy, R., J. Mater. Res. 9, 16441656 (1994).
2Wood, E. A., Am. Min. 36, 768 (1951).
3Wong-Ng, W., Gayle, F. W., Kaiser, D. L., Warkins, S. F., and Fronczek, F. R., Phys. Rev. B 41 (7), 4220 (1990).
4You, H., Welp, U., and Fang, Y., Phys. Rev. B 43 (4), 3660 (1991).
5Dinger, R. J. and White, D. J., IEEE Trans. Antennas Propag. 38 (8), 1313 (1990).
6Brandle, CD. and Fratello, V.J., J. Mater. Res. 5, 2160 (1990).
7Haggerty, J. S., Menashi, W. P., and Wenckus, J. F., Method for Forming Refractory Fibers by Laser Energy, U.S. Patent 3 944 640, March 16, 1976; Apparatus for Forming Refractory Fibers, U.S. Patent 4012213, March 15, 1977.
8Feigelson, R. S., MRS Bull. XIII, 47 (1988).
9Yamamoto, J. and Bhalla, A. S., Mater Res. Bull. 24, 761 (1989).
10Hakki, B. W. and Coleman, P. D., IEEE Trans. Microwave Theory Tech. MTT–8, 402 (1960).
11Dube, D. C., Lanagan, M. T., Kim, J. H., and Jang, S. J., J. Appl. Phys. 63, 2466 (1988).
12Ganits, F., Chemekova, T. Yu., and Udalov, Yu.P., Zh. Neorg. Khim. 24 (2), 471 (1979); Russ. J. Inorg. Chem. (Engl. Transl.) 24 (2), 260 (1979).
13Glasser, F. P. and Dent Glasser, L.S., J. Am. Ceram. Soc. 46, 377 (1963).
14Guo, R., Bhalla, A. S., and Cross, L. E., J. Appl. Phys. 75 (9), 47044708 (1994).
15Shannon, R. D., J. Appl. Phys. 73 (1), 348 (1993).
16Ravindranathan, at, unpublished results.
17Findikoglu, A. T., Doughty, C., Bhattacharya, S., Li, Qi, Xi, X. X., Venkatesan, T., Fahey, R. E., Stauss, A. J., and Phillips, J. M., Appl. Phys. Lett. 61, 1718 (1992).
18Findikoglu, A. T., Bhattacharya, S., Doughty, C., Pambianchi, M. S., Li, Qi, Xi, X. X., Anlage, S. M., Fahey, R. E., Strauss, A. J., Phillips, J. M., and Venkatesan, T., IEEE Trans. Appl. Superconductivity 3 (1), 1425 (1993).
19Mopsik, F. I., National Institute of Standards and Technology, private communication.
20Breval, E., Dodds, G. C., and Macmillan, N. H., Mater. Res. Bull. 20, 413 (1985).


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed