Skip to main content Accessibility help
×
Home

Strengthening mechanisms in nanostructured copper/304 stainless steel multilayers

  • X. Zhang (a1), A. Misra (a1), H. Wang (a1), T.D. Shen (a1), J.G. Swadener (a1), J.D. Embury (a1), H. Kung (a1), R.G. Hoagland (a1) and M. Nastasi (a1)...

Abstract

Nanostructured Cu/304 stainless steel (SS) multilayers were prepared by magnetron sputtering. 304SS has a face-centered-cubic (fcc) structure in bulk. However, in the Cu/304SS multilayers, the 304SS layers exhibit the fcc structure for layer thickness of ≤5 nm in epitaxy with the neighboring fcc Cu. For 304SS layer thickness larger than 5 nm, body-centered-cubic (bcc) 304SS grains grow on top of the initial 5 nm fcc SS with the Kurdjumov-Sachs orientation relationship between bcc and fcc SS grains. The maximum hardness of Cu/304SS multilayers is about 5.5 GPa (factor of two enhancement compared to rule-of-mixtures hardness) at a layer thickness of 5 nm. Below 5 nm, hardness decreases with decreasing layer thickness. The peak hardness of fcc/fcc Cu/304SS multilayer is greater than that of Cu/Ni, even though the lattice-parameter mismatch between Cu and Ni is five times greater than that between Cu and 304SS. This result may primarily be attributed to the higher interface barrier stress for single-dislocation transmission across the {111} twinned interfaces in Cu/304SS as compared to the {100} interfaces in Cu/Ni.

Copyright

References

Hide All
1.Clemens, B.M., Kung, H., and Barnett, S.A., MRS Bull. 24(2), 20 (1999).
2.Anderson, P.M., Foecke, T., and Hazzledine, P.M., MRS Bull. 24(2), 27 (1999).
3.Was, G.S. and Foecke, T., Thin Solid Films 286, 1 (1996).
4.Embury, J.D. and Hirth, J.P., Acta Metall. Mater. 42, 2051 (1994).
5.Hall, E.O., Proc. Roy. Soc. (London) B 64, 474 (1951).
6.Petch, N.J., J. Iron Steel Inst. 174, 25 (1953).
7.Nix, W.D., Mater. Sci. Eng. A 234-236, 37 (1997).
8.Koehler, J.S., Phys. Rev. B 2, 547 (1970).
9.Shinn, M., Hultman, L., and Barnett, S.A., J. Mater. Res. 7, 901 (1992).
10.Rao, S.I. and Hazzledine, P.M., Philos. Mag. A 80, 2011 (2000).
11.Misra, A. and Kung, H., Adv. Eng. Mater. 3, 217 (2001).
12.Hazzledine, P.M. and Rao, S.I. in Layered Materials for Structural Applications, edited by Lewandowski, J.J., Ward, C.H., Jackson, M.R., and Hunt, W.H. Jr. (Mater. Res. Soc. Symp. Proc. 434, Pittsburgh, PA, 1996), pp. 135140.
13.Tench, D.M. and White, J.T., J. Electrochem. Soc. 138, 3757 (1991).
14.Parvin, K., Weathersby, S.P., Barbee, T.W. Jr., Weihs, T.P., and Wall, M.A. in Structure and Properties of Multilayered Thin Films, edited by Nguyen, T.D., Lairson, B.M., Clemens, B.M., Shin, S-C., and Sato, K. (Mater. Res. Soc. Symp. Proc. 382, Pittsburgh, PA, 1955), pp. 191195.
15.Banas, Jacek and Mazurkiewicz, Andrzej, Mater. Sci. Eng. A 277, 183 (2000).
16.Pethica, J.B. and Oliver, W.C., Phys. Scripta T. 19, 61 (1987).
17.Barbee, T.W., Jacobson, B.E., and Keith, D.L., Thin Solid Films 63, 143 (1979).
18.Magonon, P.L. and Thomas, G., Metall. Trans. 1, 1577 (1970).
19.Keefer, D.W., Pard, A.G., Rhodes, C.G., and Kramer, D., J. Nucl. Mater. 39, 229 (1971).
20.Chu, X. and Barnett, S.A., J. Appl. Phys. 77, 4403 (1995).
21.Hoagland, R.G., Mitchell, T.E., Hirth, J.P., and Kung, H., Philos. Mag. A 82, 643 (2002).
22.Misra, A., Verdier, M., Lu, Y.C., Kung, H., Mitchell, T.E., Nastasi, M., and Embury, J.D., Scripta Mater. 39, 555 (1998).
23.Vlassak, J.J. and Nix, W.D., J. Mech. Phys. Solids 42, 1223 (1994).
24.Hoagland, R.G. and Kurtz, R. (unpublished).

Strengthening mechanisms in nanostructured copper/304 stainless steel multilayers

  • X. Zhang (a1), A. Misra (a1), H. Wang (a1), T.D. Shen (a1), J.G. Swadener (a1), J.D. Embury (a1), H. Kung (a1), R.G. Hoagland (a1) and M. Nastasi (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed