Hostname: page-component-848d4c4894-xm8r8 Total loading time: 0 Render date: 2024-07-06T16:53:43.307Z Has data issue: false hasContentIssue false

Stability of Tl–Ba–Ca–Cu–O superconducting thin films

Published online by Cambridge University Press:  31 January 2011

M. P. Siegal
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185–1421
D. L. Overmyer
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185–1421
E. L. Venturini
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185–1421
R. R. Padilla
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185–1421
P. N. Provencio
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185–1421
Get access

Abstract

We report the stability of TlBa2CaCu2O7 and Tl2Ba2CaCu2O8 on LaAlO3(100) epitaxial thin films, under a variety of conditions. All films are stable in acetone and methanol and with repeated thermal cycling to cryogenic temperatures. Moisture, especially vapor, degrades film quality rapidly. These materials are stable to high temperatures in either N2 or O2 ambients. While total degradation, resulting from Tl depletion, occurs at the same temperatures for both phases, 600 °C in N2 and 700 °C in O2, the onset of degradation occurs at somewhat lower temperatures for TlBa2CaCu2O7 than for Tl2Ba2CaCu2O8.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Siegal, M.P., Phillips, J.M., van Dover, R.B., Tiefel, T.H., and Marshall, J.H., J. Appl. Phys. 68, 6353 (1990).CrossRefGoogle Scholar
2.Inam, A., Wu, X.D., Nazar, L., Hedge, M.S., Rogers, C.T., Venkatesan, T., Simon, R.W., Daly, K., Padamsee, H., Kirchgessner, J., Moffat, D., Rubin, D., Shu, Q.S., Kalokitis, K., Fathy, A., Pendrick, V., Brown, R., Brycki, B., Belohoubek, E., Drabeck, L., Gruner, G., Hammond, R., Gamble, F., Lairson, B.M., and Bravman, J.C., Appl. Phys. Lett. 56, 1178 (1990).CrossRefGoogle Scholar
3.Hammond, R.B., Hegrete, G.V., Bourne, L.C., Strother, D.D., Cardona, A.H., and Eddy, M.M., Appl. Phys. Lett. 57, 825 (1990).CrossRefGoogle Scholar
4.Lee, W.Y., Garrison, S.M., Kawasaki, M., Venturini, E.L., Ahn, B.T., Beyers, R., Salem, J., Sayoy, R., and Vazquez, J., Appl. Phys. Lett. 60, 772 (1992).CrossRefGoogle Scholar
5.Yan, S.L., Fang, F., Song, Q.X., Yan, J., Zhu, Y.P., Chen, J.H., and Zhang, S.B., Appl. Phys. Lett. 63, 1845 (1993).CrossRefGoogle Scholar
6.Ren, Z.F., Wang, C.A., and Wang, J.H., Appl. Phys. Lett. 65, 237 (1994).CrossRefGoogle Scholar
7.Juang, J.Y., Horng, J.H., Lin, H.C., Wang, S.J., Fu, C.M., Wu, K.H., Uen, T.M., and Gou, Y.S., IEEE Trans. Appl. Supercond. 5, 1689 (1995).CrossRefGoogle Scholar
8.Siegal, M.P., Venturini, E.L., Newcomer, P.P., Overmyer, D.L., Dominguez, F., and Dunn, R., J. Appl. Phys. 78, 7186 (1995).CrossRefGoogle Scholar
9.Siegal, M.P., Missert, N., Venturini, E.L., Newcomer, P.P., Dominguez, F., and Dunn, R., IEEE Trans. Appl. Supercond. 5, 1343 (1995).CrossRefGoogle Scholar
10.Holstein, W.L. and Parisi, L.A., J. Mater. Res. 11, 1349 (1996).CrossRefGoogle Scholar
11.Siegal, M.P., Overmyer, D.L., Venturini, E.L., Newcomer, P.P., Dunn, R., Dominguez, F., Padilla, R.R., and Sokolowski, S.S., IEEE Trans. Appl. Supercond. 7, 1881 (1997).CrossRefGoogle Scholar
12.Siegal, M.P., Venturini, E.L., Morosin, B., and Aselage, T.L., J. Mater. Res. 12, 2825 (1997).CrossRefGoogle Scholar
13.Siegal, M.P., Overmyer, D.L., Venturini, E.L., Dominguez, F., and Padilla, R.R., J. Mater. Res. 13, 3349 (1998).CrossRefGoogle Scholar
14.Krusinelbaum, L., Tsuei, C.C., and Gupta, A., Nature 373, 679 (1995).CrossRefGoogle Scholar
15.Yun, S.H. and Wu, J.Z., Appl. Phys. Lett. 68, 862 (1996).CrossRefGoogle Scholar
16.Yan, S.L., Xie, Y.Y., Tu, J.Z., Aytug, T., Gapud, A.A., Kang, B.W., Fang, L., He, M., Tidrow, S.C., Kircherner, K.W., Liu, J.R., and Chu, W.K., Appl. Phys. Lett. 73, 2989 (1998).CrossRefGoogle Scholar
17.Yamasaki, H., Endo, K., Nakagawa, Y., Umeda, M., Kosaka, S., Misawa, S., Yoshida, S., and Kajimura, K., J. Appl. Phys. 72, 2951 (1992).CrossRefGoogle Scholar
18.Vanveen, G.N.A, Baller, T.S., Devries, J.W.C, and Stollman, M., Physica C 152, 267 (1988).CrossRefGoogle Scholar
19.Chang, C.A., Appl. Phys. Lett. 53, 1113 (1988).CrossRefGoogle Scholar
20.Chang, C.A. and Tsai, J.A., Appl. Phys. Lett. 53, 1976 (1988).CrossRefGoogle Scholar
21.Pham, D.K., Zhao, R.P., Fielding, P.E., Myhra, S., and Turner, P.S., J. Mater. Res. 6, 1148 (1991).CrossRefGoogle Scholar
22.Buyuklimanlith, T.H. and Simmons, J.H., Phys. Rev. B. 44, 727 (1991).CrossRefGoogle Scholar
23.Ohara, T., Sakuta, K., Kamishiro, M., and Kobayashi, T., Jpn. J. Appl. Phys. 30, L2085 (1991).CrossRefGoogle Scholar
24.Kale, S., Swaminathan, M., and Ogale, S.B., Thin Solid Films 206, 161 (1991).CrossRefGoogle Scholar
25.Muller, O., Schubert, J., Zander, W., and Stritzker, B., Physica C 191, 103 (1992).CrossRefGoogle Scholar
26.Jussain, A.A. and Sayer, M., Vacuum 43, 1195 (1992).Google Scholar
27.Zhao, R.P., Davis, C.A., Goringe, M.J., Healy, P.C., Mygra, S., and Turner, P.S., Appl. Surf. Sci. 65–66, 198 (1993).Google Scholar
28.Ganapathi, L., Giles, S., and Rao, R., Appl. Phys. Lett. 63, 993 (1993).CrossRefGoogle Scholar
29.Russek, S.E., Sanders, S.C., Roshko, A., and Ekin, J.W., Appl. Phys. Lett. 64, 3649 (1994).CrossRefGoogle Scholar
30.Dreyfuss Tatum, J., Tsai, J.W.H, Chopra, M., and Chan, S-W., J. Appl. Phys. 77, 6370 (1995).CrossRefGoogle Scholar
31.Mogro Campero, A., Paik, K.W., and Turner, L.G., J. Supercond. 8, 95 (1995).CrossRefGoogle Scholar
32.Karuzskii, A.L., Melnik, N.N., Murzin, V.N., Nozdrin, V.S., Perestoronin, A.V., Volchkkov, N.A., and Zhurkin, B.G., Appl. Surf. Sci. 92, 457 (1996).CrossRefGoogle Scholar
33.Zhoa, J.P., Lo, R.K., Savoy, S.M., Arendt, M., Armstrong, J., Yang, D.Y., Talvacchio, J., and McDevitt, J.T., Physica C 273, 223 (1997).CrossRefGoogle Scholar
34.Yun, S.H. and Karlsson, U.O., J. Appl. Phys. 82, 6348 (1997).CrossRefGoogle Scholar
35.Aytug, T., Kang, B.W., Yan, S.L., Xie, Y.Y., and Wu, J.Z., Physica C 307, 117 (1998).CrossRefGoogle Scholar
36.Yan, S.L., Fang, L., Si, M.S., Wang, J., Cao, H.L., Song, Z.X., Zhou, X.D., and Hao, J.M., Solid State Commun. 98, 723 (1996).CrossRefGoogle Scholar
37.Gyorgy, E.M., van Dover, R.B., Jackson, K.A., Schneemeyer, L.F., and Waszczak, J.V., Appl. Phys. Lett. 55, 283 (1989).CrossRefGoogle Scholar
38.Vernon-Parry, K.D., Romano, L.T., Lees, J.S., and Grovenor, C.R.M, Physica C 170, 388 (1990).CrossRefGoogle Scholar
39.Siegal, M.P., Venturini, E.L., Newcomer, P.P., Morosin, B., Overmyer, D.L., Dominguez, F., and Dunn, R., Appl. Phys. Lett. 67, 3966 (1995).CrossRefGoogle Scholar
40.Venturini, E.L., Newcomer, P.P., Siegal, M.P., and Overmyer, D.L., IEEE Trans. Appl. Supercond. 7, 1592 (1997).CrossRefGoogle Scholar
41.Newcomer, P.P., Siegal, M.P., Venturini, E.L., Morosin, B., and Overmyer, D.L., IEEE Trans. Appl. Supercond. 7, 1887 (1997).CrossRefGoogle Scholar
42.Siegal, M.P., Overmyer, D.L., Venturini, E.L., Padilla, R.R., and Provencio, P.N., IEEE Trans. Appl. Supercond. 9, 1555 (1999).CrossRefGoogle Scholar
43.Morosin, B., Venturini, E.L., and Ginley, D.S., Physica C 183, 90 (1991).CrossRefGoogle Scholar