Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-27T01:36:47.966Z Has data issue: false hasContentIssue false

Spinel solid solutions in the systems MgAl2O4–ZnAl2O4 and MgAl2O4–Mg2TiO4

Published online by Cambridge University Press:  31 January 2011

M. A. Petrova
Affiliation:
Institute of Silicate Chemistry of the Russian Academy of Sciences, 199155, St. Petersburg, Russia
G. A. Mikirticheva
Affiliation:
Institute of Silicate Chemistry of the Russian Academy of Sciences, 199155, St. Petersburg, Russia
A. S. Novikova
Affiliation:
Institute of Silicate Chemistry of the Russian Academy of Sciences, 199155, St. Petersburg, Russia
V. F. Popova
Affiliation:
Institute of Silicate Chemistry of the Russian Academy of Sciences, 199155, St. Petersburg, Russia
Get access

Abstract

Phase relations in two binary systems MgAl2O4–ZnAl2O4 and MgAl2O4–Mg2TiO4 have been studied and phase diagrams for them have been constructed. Based on the data of x-ray phase and crystal-optical analyses, the formation of a continuous series of solid solutions with spinel structure between the terminal members of the systems studied has been established. In the MgAl2O4–ZnAl2O4 system the solid solution is stable in the range from room temperature to melting temperature. In the MgAl2O4–Mg2TiO4 system the solid solution decomposes below 1380 °C, yielding the formation of limited regions of homogeneity on the basis of MgAlM2O4 and Mg2+2δ Ti1–δO4. Decomposition of the solid solution is accompanied by crystallization of MgTiO3.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Romein, F. C., Philips Res. Rep. 78, 304 (1953).Google Scholar
2.Berezhnoi, A. S. and Gul'ko, N. V., Ukr. Khim. Zhurn. (in Russian) 21, 158 (1955).Google Scholar
3.Boden, P. and Glasser, F. P., Trans. J. Brit. Ceram. Soc. 72, 215 (1973).Google Scholar
4.Colin, F., Rev. Int. Hautes Temp. Refract. 5, 267 (1968).Google Scholar
5.Delamoye, P. and Michel, A., C. R. Acad. Sci. Paris 269C, 837 (1969).Google Scholar
6.Alper, A. M., McNally, R. N., and Rible, P. H., J. Am. Ceram. Soc. 45, 263 (1962).CrossRefGoogle Scholar
7.Viechnicki, D., Schmid, F., and McCauley, J. W., J. Am. Ceram. Soc. 57, 47 (1974).CrossRefGoogle Scholar
8. Ch. Schlaudt, M. and Roy, D. M., J. Am. Ceram. Soc. 48, 248 (1965).CrossRefGoogle Scholar
9.Rankin, G. A. and Mervin, H. E., J. Am. Ceram. Soc. 38, 568 (1916).Google Scholar
10.Bunting, E. N., J. Res. Nat. Bur. Stand. 8, 279 (1932).CrossRefGoogle Scholar
11.Wartenberg, H. R. and Prophet, E., Z. anorg. allg. Chem. 208, 188 (1932).Google Scholar
12.Coughanour, L. W. and De Prosse, V. A., J. Res. Nat. Bur. Stand. 51, 85 (1953).CrossRefGoogle Scholar
13.Massazza, F. and Sirchia, E., Chim. Ind. (Milan) 40, 376 (1958).Google Scholar
14.Woirmann, E., Brezny, B., and Muan, A., Am. J. Sci. 267A, 467 (1969).Google Scholar
15.Rouf, M. A., Cooper, A. H., and Bell, H. B., Trans. Brit. Ceram. Soc. 68, 263 (1969).Google Scholar
16.Isamu, Shindo, J. Cryst. Growth 50, 839 (1980).Google Scholar
17.Rao, M. Ramakrishna, J. Sci. Industr. Res. 16B, 444 (1957).Google Scholar
18.Winchell, A. N. and Winchell, H., The Microscopical Characters of Artificial Inorganic Solid Substances: Optical Properties of Artificial Minerals (Academic Press, New York, 1964), p. 98.Google Scholar