Skip to main content Accessibility help
×
Home

Spherical indentation for determining the phase transition properties of shape memory alloys

  • Linmao Qian (a1), Shuang Zhang (a1), Dongyang Li (a2) and Zhongrong Zhou (a1)

Abstract

A spherical indentation method was developed to characterize the phase transition behaviors of shape memory alloys (SMAs). Based on deformation analysis, the measured indentation force-depth curves of SMAs can be converted to their nominal stress-strain curves. The predicted elastic modulus and phase transition stress of SMAs from spherical indentation agree well with those directly measured from tensile tests. This approach should be especially useful for characterizing the phase transition properties of SMA materials of small size or thin films.

Copyright

Corresponding author

a) Address all correspondence to this author. e-mail: linmao@swjtu.edu.cn

References

Hide All
1.Brinson, L.C. and Moran, B.: Mechanics of Phase Transformations and Shape Memory Alloys (American Society of Mechanical Engineers, New York, 1994).
2.Duerig, T., Melton, K.N., Stockel, D., and Wayman, C.M.: Engineering Aspect of Shape Memory Alloys (Butterworth-Heine-mann, Boston, 1990).
3.Kahn, H., Huff, M.A., and Heuer, A.H.: The TiNi shape-memory alloy and its applications for MEMS. J. Micromech. Microeng. 8, 213 (1998).
4.Qian, L.M., Sun, Q.P., and Xiao, X.D.: Role of phase transition in the unusual microwear behavior of superelastic NiTi shape memory alloy. Wear 260, 509 (2006).
5.Seelecke, S. and Müller, I.: Shape memory alloy actuators in smart structures: Modeling and simulation. Appl. Mech. Rev. 57, 23 (2004).
6.Yan, W.Y., Sun, Q.P., Feng, X.Q., and Qian, L.M.: Determination of transformation stresses of shape memory alloy thin films: A method based on spherical indentation. Appl. Phys. Lett. 88, 241912 (2006).
7.Oliver, W.C. and Pharr, G.M.: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).
8.Lawn, B.R.: Indentation of ceramics with spheres: A century after Hertz. J. Am. Ceram. Soc. 81, 1977 (1998).
9.Ni, W., Cheng, Y.T., and Grummon, D.S.: Microscopic superelastic behavior of a nickel-titanium alloy under complex loading conditions. Appl. Phys. Lett. 2811, 82 (2003).
10.Ni, W., Cheng, Y.T., Lukitsch, M.J., Weiner, A.M., Lev, L.C., and Grummon, D.S.: Effects of the ratio of hardness to Young's modulus on the friction and wear behavior of bilayer coatings. Appl. Phys. Lett. 85, 4028 (2004).
11.Shaw, G.A., Stone, D.S., Johnson, A.D., Ellis, A.B., and Crone, W.C.: The shape memory effect in nanoindentation of nickel-titanium thin films. Appl. Phys. Lett. 257, 83 (2003).
12.Ma, X.G. and Komvopoulos, K.: Nanoscale pseudoelastic behavior of indented titanium-nickel films. Appl. Phys. Lett. 83, 3773 (2003).
13.Gall, K., Juntunen, K., Maier, H.J., Sehitoglu, H., and Chumlyakov, Y.I.: Instrumented micro-indentation of NiTi shape memory alloys. Acta Mater. 49, 3205 (2001).
14.Zhang, H-S. and Komvopoulos, K.: Thermomechanical effects on phase transformations in single-crystal Cu–Al–Ni shape-memory alloy. J. Mater. Sci. 41, 5021 (2006).
15.Basu, S., Moseson, A., and Barsoum, M.W.: On the determination of spherical nanoindentation stress-strain curves. J. Mater. Res. 21, 2628 (2006).
16.Herbert, E.G., Pharr, G.M., Oliver, W.C., Lucas, B.N., and Hay, J.L.: On the measurement of stress-strain curves by spherical indentation. Thin Solid Films 398–399, 331 (2001).
17.Field, J.S. and Swain, M.V.: A simple predictive model for spherical indentation. J. Mater. Res. 8, 297 (1993).
18.Ng, K.L. and Sun, Q.P.: Stress-induced transformation and detwin-ning in NiTi polycrystalline shape memory alloy tubes. Mech. Mater. 38(1–2), 41 (2006).
19.Qian, L.M., Xiao, X.D., Sun, Q.P., and Yu, T.X.: Anomalous relationship between hardness and wear properties of a superelastic nickel–titanium alloy. Appl. Phys. Lett. 84, 1076 (2004).
20.Qian, L.M., Sun, Q.P., and Zhou, Z.R.: Fretting wear behavior of superelastic nickel titanium shape memory alloy. Tribol. Lett. 18, 463 (2005).
21.Orgeas, L. and Favier, D.: Stress-induced martensitic transformation of a NiTi alloy in isothermal shear, tension and compression. Acta Mater. 46, 5579 (1998).
22.Johnson, K.L.: Contact Mechanics (Cambridge University Press, Cambridge, 1985).
23.Kim, D.H., Lee, M.G., Kim, B., and Sun, Y.: Superelastic alloy microgripper with embedded electromagnetic actuators and piezoelectric force sensors: A numerical and experimental study. Smart Mater. Struct. 14, 1265 (2005).
24.Sneddon, I.N.: The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile. Int. J. Eng. Sci. 3, 47 (1965).
25.Tabor, D.: The Hardness of Metals (Clarendon Press, Oxford, 1951).
26.Liu, Y., Xie, Z., Humbeeck, J.V., and Delaey, L.: Asymmetry of stress-strain curves under tension and compression for NiTi shape memory alloys. Acta Mater. 46, 4325 (1998).
27.Gall, K. and Sehitoglu, H.: The role of texture in tension/compression asymmetry in polycrystalline NiTi. Int. J. Plast. 15, 69 (1999).
28.Huang, W.M., Su, J.F., Hong, M.H., and Yang, B.: Pile-up and sink-in in micro-indentation of a NiTi shape-memory alloy. Scr. Mater. 53, 1055 (2005).
29.Plietsch, R. and Ehrlich, K.: Strength differential effect in pseudoelastic NiTi shape memory alloys. Acta Mater. 45, 2417 (1997).

Keywords

Related content

Powered by UNSILO

Spherical indentation for determining the phase transition properties of shape memory alloys

  • Linmao Qian (a1), Shuang Zhang (a1), Dongyang Li (a2) and Zhongrong Zhou (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.