Skip to main content Accessibility help

Solvent processed conductive polymer with single-walled carbon nanotube composites

  • Zhe Jia (a1), Hui Zhao (a1), Ying Bai (a2), Ting Zhang (a3), Amanda S. Lupinacci (a4), Andrew M. Minor (a5) and Gao Liu (a6)...


Single-walled carbon nanotube (SWNT) and conductive polymer composite were studied as a potential electrode candidate for plastic electronic devices such as organic light-emitting diodes (OLEDs) and solar cells. A novel conductive polymer, poly(2,7–9,9(di(oxy-2,5,8-trioxadecane))fluorene) (PFO), was synthesized and characterized as a surfactant to disperse SWNTs in solutions. The ethylene oxide (EO) side chain of rigid PFO backbone acts as a template to wrap around SWNTs in solution. Up to 0.02% (by weight) of SWNTs are stabilized and well separated in the solution phase. The carbon nanotube can be dispersed in solutions for over 4 mo. Transmission electron microscopy (TEM) images of solvent cast film suggest highly uniformed SWNT distribution incorporated in the conductive polymer matrix. Transmittance characterization shows the film is as transparent as indium tin oxide conducting glass. Conductivity measurement shows SWNTs can effectively inject charges into the PFO polymer matrix at low voltage. The current versus voltage profile of the SWNT/PFO composite film (2% SWNT in PFO by weight) shows that the majority current conducting is carried by SWNTs.


Corresponding author

a)Address all correspondence to this author. e-mail:


Hide All
1.Chen, J., Perebeinos, V., Freitag, M., Tsang, J., Fu, Q., Liu, J., and Avouris, P.: Bright infrared emission from electrically induced excitons in carbon nanotubes. Science 310(5751), 1171 (2005).
2.Fennimore, A.M., Yuzvinsky, T.D., Han, W.Q., Fuhrer, M.S., Cumings, J., and Zettl, A.: Rotational actuators based on carbon nanotubes. Nature 424(6947), 408 (2003).
3.Collins, P.G. and Avouris, P.: Nanotubes for electronics. Sci.Am. 283(6), 62 (2000).
4.Ren, Z.F., Huang, Z.P., Xu, J.W., Wang, J.H., Bush, P., Siegal, M.P., and Provencio, P.N.: Synthesis of large arrays of well-aligned carbon nanotubes on glass. Science 282(5391), 1105 (1998).
5.Behabtu, N., Young, C.C., Tsentalovich, D.E., Kleinerman, O., Wang, X., Ma, A.W.K., Bengio, E.A., ter Waarbeek, R.F., de Jong, J.J., Hoogerwerf, R.E., Fairchild, S.B., Ferguson, J.B., Maruyama, B., Kono, J., Talmon, Y., Cohen, Y., Otto, M.J., and Pasquali, M.: Strong, light, multifunctional fibers of carbon nanotubes with ultrahigh conductivity. Science 339(6116), 182 (2013).
6.Jiang, C., Saha, A., Young, C.C., Hashim, D.P., Ramirez, C.E., Ajayan, P.M., Pasquali, M., and Martí, A.A.: Macroscopic nanotube fibers spun from single-walled carbon nanotube polyelectrolytes. ACS Nano 8(9), 9107 (2014).
7.Saha, A., Jiang, C., and Martí, A.A.: Carbon nanotube networks on different platforms. Carbon 79, 1 (2014).
8.O'Connell, M.J., Boul, P., Ericson, L.M., Huffman, C., Wang, Y.H., Haroz, E., Kuper, C., Tour, J., Ausman, K.D., and Smalley, R.E.: Reversible water-solubilization of single-walled carbon nanotubes by polymer wrapping. Chem. Phys. Lett. 342(3–4), 265 (2001).
9.Xia, H.S., Wang, Q., and Qiu, G.H.: Polymer-encapsulated carbon nanotubes prepared through ultrasonically initiated in situ emulsion polymerization. Chem. Mater. 15(20), 3879 (2003).
10.Richard, C., Balavoine, F., Schultz, P., Ebbesen, T.W., and Mioskowski, C.: Supramolecular self-assembly of lipid derivatives on carbon nanotubes. Science 300(5620), 775 (2003).
11.Tang, C.W. and VanSlyke, S.A.: Organic electroluminescent diodes. Appl. Phys. Lett. 51(12), 913 (1987).
12.Burroughes, J.H., Bradley, D.D.C., Brown, A.R., Marks, R.N., Mackay, K., Friend, R.H., Burns, P.L., and Holmes, A.B.: Light-emitting diodes based on conjugated polymers. Nature 347, 539 (1990).
13.Braun, D. and Heeger, A.J.: Visible light emission from semiconducting polymer diodes. Appl. Phys. Lett. 58(18), 1982 (1991).
14.Hebner, T.R., Wu, C.C., Marcy, D., Lu, M.H., and Sturm, J.C.: Ink-jet printing of doped polymers for organic light emitting devices. Appl. Phys. Lett. 72(5), 519 (1998).
15.Pardo, D.A., Jabbour, G.E., and Peyghambarian, N.: Application of screen printing in the fabrication of organic light-emitting devices. Adv. Mater. 12(17), 1249 (2000).
16.Fournet, P., O'Brien, D.F., Coleman, J.N., Horhold, H.H., and Blau, W.J.: A carbon nanotube composite as an electron transport layer for M3EH-PPV based light-emitting diodes. Synth. Met. 121(13 Special Issue), 1683 (2001).
17.Woo, H.S., Czerw, R., Webster, S., Carroll, D.L., Ballato, J., Strevens, A.E., O'Brien, D., and Blau, W.J.: Hole blocking in carbon nanotube-polymer composite organic light-emitting diodes based on poly (m-phenylene vinylene-co-2,5-dioctoxy-p-phenylene vinylene). Appl. Phys. Lett. 77(9), 1393 (2000).
18.Dalton, A.B., Blau, W.J., Chambers, G., Coleman, J.N., Henderson, K., Lefrant, S., McCarthy, B., Stephan, C., and Byrne, H.J.: A functional conjugated polymer to process, purify and selectively interact with single wall carbon nanotubes. Synth. Met. 121(13 Special Issue), 1217 (2001).
19.Mc Carthy, B., Coleman, J.N., Czerw, R., Dalton, A.B., Carroll, D.L., and Blau, W.J.: Microscopy studies of nanotube-conjugated polymer interactions. Synth. Met. 121(13 Special Issue), 1225 (2001).
20.Fournet, P., Coleman, J.N., Lahr, B., Drury, A., Blau, W.J., O'Brien, D.F., and Horhold, H.H.: Enhanced brightness in organic light-emitting diodes using a carbon nanotube composite as an electron-transport layer. J. Appl. Phys. 90(2), 969 (2001).
21.Jia, Z., Yuan, W., Zhao, H., Hu, H., and Baker, G.L.: Composite electrolytes comprised of poly(ethylene oxide) and silica nanoparticles with grafted poly(ethylene oxide)-containing polymers. RSC Adv. 4(77), 41087 (2014).
22.Jia, Z., Yuan, W., Sheng, C., Zhao, H., Hu, H., and Baker, G.L.: Optimizing the electrochemical performance of imidazolium-based polymeric ionic liquids by varying tethering groups. J. Polym. Sci., Part A: Polym. Chem. 53(11), 1339 (2015).
23.Hu, H., Yuan, W., Lu, L., Zhao, H., Jia, Z., and Baker, G.L.: Low glass transition temperature polymer electrolyte prepared from ionic liquid grafted polyethylene oxide. J. Polym. Sci., Part A: Polym. Chem. 52(15), 2104 (2014).
24.Hu, H., Yuan, W., Jia, Z., and Baker, G.L.: Ionic liquid-based random copolymers: A new type of polymer electrolyte with low glass transition temperature. RSC Adv. 5(5), 3135 (2015).
25.Deng, Y., Yuan, W., Jia, Z., and Liu, G.: H- and J-aggregation of fluorene-based chromophores. J. Phys. Chem. B 118(49), 14536 (2014).
26.Jullien, L., Canceill, J., Lacombe, L., and Lehn, J.M.: Analysis of the conformational behavior of perfunctionalized beta-cyclodextrins .1. Evidence for insertion of one of the rim substituents into the cyclodextrin cavity in organic-solvents. J. Chem. Soc., Perkin Trans. 2(5), 989 (1994).
27.Pei, , Qibing, , and Yang, , Yang, : Efficient photoluminescence and electroluminescence from a soluble polyfluorene. J. Am. Chem. Soc. 118(31), 7416 (1996).
28.Stephan, O. and Vial, J.C.: Blue light electroluminescent devices based on a copolymer derived from fluorene and carbazole. Synth. Met. 106(2), 115 (1999).
29.Nguyen, T.Q., Doan, V., and Schwartz, B.J.: Conjugated polymer aggregates in solution: Control of interchain interactions. J. Chem. Phys. 110(8), 4068 (1999).


Related content

Powered by UNSILO

Solvent processed conductive polymer with single-walled carbon nanotube composites

  • Zhe Jia (a1), Hui Zhao (a1), Ying Bai (a2), Ting Zhang (a3), Amanda S. Lupinacci (a4), Andrew M. Minor (a5) and Gao Liu (a6)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.