Skip to main content Accessibility help

Solution-processed P3HT-functional graphene for efficient heterojunction organic photoelectronics

  • Jian Ye (a1), Xueliang Li (a2), Jianjun Zhao (a1), Xuelan Mei (a1) and Qian Li (a1)...


A facile method that allows chemical functionalization of graphene sheets is described. These result in a solution processable graphene-based material, namely F-graphene, which can be integrated in organic photoelectronic devices, due to its unique structural and photophysical properties. The resultant poly(3-hexylthiophene)(P3HT):F-graphene are soluble in common organic solvents, facilitating the structure/property characterization and the device fabrication by solution processing. The synthesized F-graphene is blended with the conjugated polymer in optimized concentration. The high and sensitive photoresponse of P3HT:F-graphene was demonstrated by the photodetector. A heterojunction photovoltaic device based on the solution-cast P3HT:F-graphene (with a BHJ structure of ITO/ZnO/P3HT:F-graphene/MoO3/Ag) showed a power conversion efficiency of 1.9% under AM1.5 illumination (100 mW/cm2). It provides a new method for graphene application in organic photoelectronics. It can easily enhance the performance of devices by optimizing the structure and bulk heterojunction blend in the near future.


Corresponding author

a) Address all correspondence to this author. e-mail:


Hide All

Contributing Editor: Sam Zhang



Hide All
1. Yu, G., Gao, J., Hummelen, J., Wudl, F., and Heeger, A.: Polymer photovoltaic cells: Enhanced efficiencies via a network of internal donor–acceptor heterojunctions. Science 270(5243), 1789 (1995).
2. Heeger, A.J.: 25th anniversary article: Bulk heterojunction solar cells: Understanding the mechanism of operation. Adv. Mater. 26(1), 10 (2014).
3. Guo, F., Zhu, X., Forberich, K., Krantz, J., Stubhan, T., Salinas, M., Halik, M., Spallek, S., Butz, B., Spiecker, E., Ameri, T., Li, N., Kubis, P., Guldi, D.M., Matt, G.J., and Brabec, C.J.: ITO-Free and fully solution-processed semitransparent organic solar cells with high fill factors. Adv. Energy Mater. 3(8), 1062 (2013).
4. Dou, L., You, J., Hong, Z., Xu, Z., Li, G., Street, R.A., and Yang, Y.: 25th anniversary article: A decade of organic/polymeric photovoltaic research. Adv. Mater. 25(46), 6642 (2013).
5. Yip, H-L. and Jen, A.K-Y.: Recent advances in solution-processed interfacial materials for efficient and stable polymer solar cells. Energy Environ. Sci. 5(3), 5994 (2012).
6. Chen, C-C., Dou, L., Gao, J., Chang, W-H., Li, G., and Yang, Y.: High-performance semi-transparent polymer solar cells possessing tandem structures. Energy Environ. Sci. 6(9), 2714 (2013).
7. Park, S.H., Roy, A., Beaupré, S., Cho, S., Coates, N., Moon, J.S., Moses, D., Leclerc, M., Lee, K., and Heeger, A.J.: Bulk heterojunction solar cells with internal quantum efficiency approaching 100%. Nat. Photonics 3(5), 297 (2009).
8. Cai, W., Gong, X., and Cao, Y.: Polymer solar cells: Recent development and possible routes for improvement in the performance. Sol. Energy Mater. Sol. Cells 94(2), 114 (2010).
9. Lu, L., Zheng, T., Wu, Q., Schneider, A.M., Zhao, D., and Yu, L.: Recent advances in bulk heterojunction polymer solar cells. Chem. Rev. 115(23), 12666 (2015).
10. Hoppe, H. and Sariciftci, N.S.: Morphology of polymer/fullerene bulk heterojunction solar cells. J. Mater. Chem. 16(1), 45 (2006).
11. Zhou, Y., Kurosawa, T., Ma, W., Guo, Y., Fang, L., Vandewal, K., Diao, Y., Wang, C., Yan, Q., and Reinspach, J.: High performance all-polymer solar cell via polymer side-chain engineering. Adv. Mater. 26(22), 3767 (2014).
12. Zhou, N., Lin, H., Lou, S.J., Yu, X., Guo, P., Manley, E.F., Loser, S., Hartnett, P., Huang, H., and Wasielewski, M.R.: Morphology-performance relationships in high-efficiency all-polymer solar cells. Adv. Energy Mater. 4(3), 1300785 (2014).
13. Wang, Y., Tong, S.W., Xu, X.F., Özyilmaz, B., and Loh, K.P.: Interface engineering of layer-by-layer stacked graphene anodes for high-performance organic solar cells. Adv. Mater. 23(13), 1514 (2011).
14. Liu, J., Xue, Y., Gao, Y., Yu, D., Durstock, M., and Dai, L.: Hole and electron extraction layers based on graphene oxide derivatives for high-performance bulk heterojunction solar cells. Adv. Mater. 24(17), 2228 (2012).
15. Yin, Z., Zhu, J., He, Q., Cao, X., Tan, C., Chen, H., Yan, Q., and Zhang, H.: Graphene-based materials for solar cell applications. Adv. Energy Mater. 4(1), 1300574 (2014).
16. Zhu, Z., Ma, J., Wang, Z., Mu, C., Fan, Z., Du, L., Bai, Y., Fan, L., Yan, H., and Phillips, D.L.: Efficiency enhancement of perovskite solar cells through fast electron extraction: The role of graphene quantum dots. J. Am. Chem. Soc. 136(10), 3760 (2014).
17. Yu, D., Yang, Y., Durstock, M., Baek, J-B., and Dai, L.: Soluble P3HT-grafted graphene for efficient bilayer–heterojunction photovoltaic devices. ACS Nano 4(10), 5633 (2010).
18. Yu, D., Park, K., Durstock, M., and Dai, L.: Fullerene-grafted graphene for efficient bulk heterojunction polymer photovoltaic devices. J. Phys. Chem. Lett. 2(10), 1113 (2011).
19. Liu, Q., Liu, Z., Zhang, X., Yang, L., Zhang, N., Pan, G., Yin, S., Chen, Y., and Wei, J.: Polymer photovoltaic cells based on solution-processable graphene and P3HT. Adv. Funct. Mater. 19(6), 894 (2009).
20. Hummers, W.S. Jr and Offeman, R.E.: Preparation of graphitic oxide. J. Am. Chem. Soc. 80(6), 1339 (1958).
21. Sun, Y., Seo, J.H., Takacs, C.J., Seifter, J., and Heeger, A.J.: Inverted polymer solar cells integrated with a low-temperature-annealed sol–gel-derived ZnO film as an electron transport layer. Adv. Mater. 23(14), 1679 (2011).
22. Kumar, P.V., Bardhan, N.M., Tongay, S., Wu, J., Belcher, A.M., and Grossman, J.C.: Scalable enhancement of graphene oxide properties by thermally driven phase transformation. Nat. Chem. 6(2), 151 (2014).
23. Liu, F., Song, S., Xue, D., and Zhang, H.: Folded structured graphene paper for high performance electrode materials. Adv. Mater. 24(8), 1089 (2012).
24. Wang, Y., Li, Y., Tang, L., Lu, J., and Li, J.: Application of graphene-modified electrode for selective detection of dopamine. Electrochem. Commun. 11(4), 889 (2009).
25. Huang, P.Y., Ruiz-Vargas, C.S., van der Zande, A.M., Whitney, W.S., Levendorf, M.P., Kevek, J.W., Garg, S., Alden, J.S., Hustedt, C.J., and Zhu, Y.: Grains and grain boundaries in single-layer graphene atomic patchwork quilts. Nature 469(7330), 389 (2011).
26. Peng, Z., Somodi, F., Helveg, S., Kisielowski, C., Specht, P., and Bell, A.T.: High-resolution in situ and ex situ TEM studies on graphene formation and growth on Pt nanoparticles. J. Catal. 286, 22 (2012).


Related content

Powered by UNSILO
Type Description Title
Supplementary materials

Ye supplementary material
Figures S1-S6

 Word (1.9 MB)
1.9 MB

Solution-processed P3HT-functional graphene for efficient heterojunction organic photoelectronics

  • Jian Ye (a1), Xueliang Li (a2), Jianjun Zhao (a1), Xuelan Mei (a1) and Qian Li (a1)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.