Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-25T13:41:46.625Z Has data issue: false hasContentIssue false

Solid-state phase separation in Zr–Y–Al–Co metallic glass

Published online by Cambridge University Press:  31 January 2011

Byung Joo Park
Affiliation:
Department of Metallurgical Engineering, Center for Noncrystalline Materials, Yonsei University, Seoul 120-749, Korea
Sung Woo Sohn
Affiliation:
Department of Metallurgical Engineering, Center for Noncrystalline Materials, Yonsei University, Seoul 120-749, Korea
Do Hyang Kim*
Affiliation:
Department of Metallurgical Engineering, Center for Noncrystalline Materials, Yonsei University, Seoul 120-749, Korea
Hee Tae Jeong
Affiliation:
BK21 Division of Humantronics Information Materials, Yonsei University, Seoul 120-749, Korea
Won Tae Kim
Affiliation:
Division of Applied Science, Chongju University, Chongju 360-764, Korea
*
a)Address all correspondence to this author. e-mail: dohkim@yonsei.ac.kr
Get access

Abstract

The present study shows that the as-melt-spun Zr28Y28Al22Co22 amorphous ribbon undergoes solid-state phase separation into Zr- and Y-rich regions when heated below the glass transition temperature (Tg). Dynamic mechanical measurements show that two types of low-temperature relaxation occur below Tg, and transmission electron microscopy observation confirms the solid-state phase-separated microstructure. The diffusion coefficient of solid-state phase separation is calculated by the measured separation distance.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Okumura, A.H., Inoue, A., Masumoto, T.: Heating rate dependence of two glass transitions and phase separation for a La55Al25Ni20 amorphous alloy. Acta Metall. Mater. 41, 915 1993CrossRefGoogle Scholar
2Sugiyama, K., Shinohara, A.H., Waseda, Y., Chen, S., Inoue, A.: Anomalous SAXS study on structural inhomogeneity in amorphous Zr33Y27Al15Ni25 alloy. Mater. Trans. Jpn. Inst. Metals 35, 481 1994Google Scholar
3Schneider, S., Thiyagarajan, P., Johnson, W.L.: Formation of nanocrystals based on decomposition in the amorphous Zr41.2Ti13.8Cu12.5Ni10Be22.5 alloy. Appl. Phys. Lett. 68, 493 1996CrossRefGoogle Scholar
4Martin, I., Ohkubo, T., Ohnuma, M., Deconihout, B., Hono, K.: Nanocrystallization of Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 metallic glass. Acta Mater. 52, 4427 2004CrossRefGoogle Scholar
5Kündig, A.A., Ohnuma, M., Ping, D.H., Ohkubo, T., Hono, K.: In situ formed two-phase metallic glass with surface fractal microstructure. Acta Mater. 52, 2441 2004Google Scholar
6Mattern, N., Kühn, U., Gebert, A., Gemming, T., Zinkevich, M., Wendrock, H., Schultz, L.: Microstructure and thermal behavior of two-phase amorphous Ni–Nb–Y alloy. Scripta Mater. 53, 271 2005CrossRefGoogle Scholar
7Park, B.J., Chang, H.J., Kim, D.H., Kim, W.T.: In situ formation of two amorphous phases by liquid phase separation in Y–Ti–Al–Co alloy. Appl. Phys. Lett. 85, 6353 2004CrossRefGoogle Scholar
8Park, B.J., Chang, H.J., Kim, D.H., Kim, W.T., Chattopadhyay, K., Abinandanan, T.A., Bhattacharyya, S.: Phase separating bulk metallic glass: A hierarchical composite. Phys. Rev. Lett. 96, 245503 2006Google Scholar
9Chen, H.S., Turnbull, D.: Formation, stability and structure of palladium-silicon based alloys glasses. Acta Metall. 17, 1021 1969CrossRefGoogle Scholar
10Williams, M.L., Landel, R.F., Ferry, J.D.: The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. J. Am. Chem. Soc. 77, 3701 1955CrossRefGoogle Scholar
11Schröter, K., Whilde, G., Willnecker, R., Weiss, M., Samwer, K., Donth, E.: Shear modulus and compliance in the range of the dynamic glass transition for metallic glass. Eur. Phys. J. B 5, 1 1998Google Scholar
12Okumura, H., Chen, H.S., Inoue, A., Masumoto, T.: Sub-T g mechanical relaxation of a La55Al25Ni20 amorphous alloy. J. Non-Cryst. Solids 130, 304 1991CrossRefGoogle Scholar
13Okumura, H., Chen, H.S., Inoue, A., Masumoto, T.: The observation of two glass transitions in the dynamic mechanical properties of a La55Al25Ni20 amorphous alloy. J. Non-Cryst. Solids 142, 165 1992CrossRefGoogle Scholar
14Perera, D.N., Tsai, A.P.: Dynamic tensile measurements for Pt60Ni15P25 below the calorimetric glass transition temperature. J. Phys.: Condens. Matter 11, 3029 1999Google Scholar
15Jeong, H.T., Kim, J-H., Kim, W.T., Kim, D.H.: The mechanical relaxations of a Mm55Al25Ni10Cu10 amorphous alloy studied by dynamic mechanical analysis. Mat. Sci. Eng., A 385, 182 2004CrossRefGoogle Scholar
16Cahn, J.W.: Phase separation by spinodal decomposition in isotropic systems. J. Chem. Phys. 42, 93 1965CrossRefGoogle Scholar
17Doremus, R.H.: Rates of Phase Transformations Academic Press Inc., Orlando, FL 1985 82Google Scholar
18Cahn, J.W., Charles, R.W.: The initial stages of phase separation in glasses. Phys. Chem. Glasses 6, 181 1965Google Scholar
19Faupel, F., Frank, W., Macht, M., Mehrer, H., Naundorf, V., Rätzke, K., Schober, H.R., Sharma, S.K., Tichler, H.: Diffusion in metallic glasses and supercooled melts. Rev. Mod. Phys. 75, 238 2003CrossRefGoogle Scholar