Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-25T16:44:18.828Z Has data issue: false hasContentIssue false

Smooth diamond films grown by hot filament chemical vapor deposition on positively biased silicon substrates

Published online by Cambridge University Press:  03 March 2011

Galina Popovici
Affiliation:
Nuclear Engineering Department, University of Missouri, Columbia, Missouri 65211
C.H. Chao
Affiliation:
Electrical Engineering Department, University of Missouri, Columbia, Missouri 65211
M.A. Prelas
Affiliation:
Nuclear Engineering Department, University of Missouri, Columbia, Missouri 65211
E.J. Charlson
Affiliation:
Electrical Engineering Department, University of Missouri, Columbia, Missouri 65211
J.M. Meese
Affiliation:
Electrical Engineering Department, University of Missouri, Columbia, Missouri 65211
Get access

Abstract

Diamond films have been grown by hot filament chemical vapor deposition (CVD) on mirror-polished positively biased Si substrates. Very smooth films a few micrometers thick were obtained in only 30 min. SEM, x-ray diffraction patterns, and Raman were used to characterize the films. Not only diamond but other carbon phases, were also detected. The initial structure showed a high density of defects and large stresses. Structural changes in time were found to occur with films apparently undergoing a phase transformation.

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Wild, C., Muller-Sebert, W., Eckermann, T., and Koidl, P., Applications of Diamond Films and Related Materials, Materials Sci. Monographs, Vol. 73 (Elsevier Science Publishers, New York, 1991), p. 197.Google Scholar
2Davis, R. F., Physica B 185, 1 (1993).Google Scholar
3Popovici, G. and Prelas, M. A., Phys. Status Solidi A 132, 233 (1992).CrossRefGoogle Scholar
4Sawabe, A. and Inuzuka, T., Appl. Phys. Lett. 46, 146 (1985).CrossRefGoogle Scholar
5Kobayashi, K., Karasava, S., and Watanabe, T., J. Cryst. Growth 99, 1211 (1990).CrossRefGoogle Scholar
6Yugo, S., Kanai, T., Kimura, T., and Muto, T., Appl. Phys. Lett. 58, 1036 (1991).CrossRefGoogle Scholar
7Walter, S. D., Stoner, B. R., Glass, J. T., Ellis, P. J., Buchaenko, D. S., Jenkins, C. E., and Southworth, P., Appl. Phys. Lett. 62, 1215 (1993).Google Scholar
8Jiang, X., Klages, C-P., Zachai, R., Hartweg, M., and Fusser, H-J., Appl. Phys. Lett. 62, 3438 (1993).CrossRefGoogle Scholar
9Ownby, P. D., Yang, X., and Liu, J., J. Am. Ceram. Soc. 75, 1876 (1992).Google Scholar
10Bundy, F. P. and Kasper, J. S., J. Chem. Phys. 46, 3437 (1967).Google Scholar
11Howard, W., Huang, D., Yuan, J., Frenklach, M., Spear, K. E., Koba, R., and Phelps, A. W., J. Appl. Phys. 68, 1247 (1990).Google Scholar
12Maruiama, K., Makino, M., Kikukawa, N., and Shirashi, M., J. Mater. Sci. Lett. 11, 116 (1992).Google Scholar
13Badzian, A. R. and Badzian, T., Diamond Relat. Mater. 2, 147 (1993).CrossRefGoogle Scholar
14Howard, W., Huang, D., Yuan, J., Frenklach, M., Spear, K. E., Koba, R., and Phelps, A. W., J. Appl. Phys. 68, 1247 (1990).Google Scholar
15Knight, D. S. and White, W. B., J. Mater. Res. 4, 385 (1989).CrossRefGoogle Scholar
16Bachmann, P. K. and Wiechert, D. U., Diamond Relat. Mater. 1, 422 (1992).Google Scholar
17Khasawinah, S. A., Popovici, G., Farmer, J., Sung, T., Prelas, M. A., Chamberlain, J., and White, H., unpublished research.Google Scholar
18Gheeraert, E., Deneuville, A., Bonnot, A. M., and Abello, L., Diamond Relat. Mater. 1, 525 (1992).CrossRefGoogle Scholar
19Grimsch, M. H., Anastakis, E., and Cardona, M., Phys. Rev. B 18, 901 (1991).CrossRefGoogle Scholar
20Bopart, H., van Straaten, J., and Silvera, I. F., Phys. Rev. B 32, 1423 (1985).CrossRefGoogle Scholar
21Barrett, C. and Massalski, T. B., Structure of Metals (Pergamon Press, New York, 1980), pp. 486507.Google Scholar