Skip to main content Accessibility help
×
Home

Slow and rapid cooling of Al–Cu–Si ultrafine eutectic composites: Interplay of cooling rate and microstructure in mechanical properties

  • Guilherme Lisboa de Gouveia (a1), Rafael Kakitani (a2), Leonardo Fernandes Gomes (a1), Conrado Ramos Moreira Afonso (a1), Noé Cheung (a2) and José Eduardo Spinelli (a1)...

Abstract

Ternary Al–15 wt% Cu–7 wt% Si and Al–22 wt% Cu–7 wt% Si alloy specimens were generated by transient directional solidification (DS) and rapid solidification (RS) techniques. The microstructures are constituted by an α-Al dendritic matrix surrounded by two eutectic, that is, a binary eutectic (Si + α-Al) and a bimodal eutectic, consisting of cellular-type binary eutectic colonies (α-Al + Al2Cu) in a ternary eutectic matrix consisting of α-Al + Al2Cu + Si. The bimodal eutectic exists at cooling rates from 0.5 to 250 K/s. The secondary dendritic spacing, λ2, of the DS samples varied from 5 to 20 μm and from 10 to 18 μm for both examined alloys. The λ2 from 2.7 to 4.0 μm characterized the RS samples. Mechanical properties have been determined for various samples related to different dendritic spacing values. Based on the evaluation of the rapidly solidified microstructures, it was possible to assess the cooling rates.

Copyright

Corresponding author

a)Address all correspondence to this author. e-mail: spinelli@ufscar.br

References

Hide All
1.He, G., Eckert, J., Löser, W., and Schultz, L.: Novel Ti-base nanostructure-dendrite composite with enhanced plasticity. Nat. Mater. 2, 33 (2003).
2.Park, J.M., Sohn, S.W., Kim, T.E., Kim, D.H., Kim, K.B., and Kim, W.T.: Nanostructure-dendrite composites in the Fe–Zr binary alloy system exhibiting high strength and plasticity. Scr. Mater. 57, 1153 (2007).
3.Louzguine, D.V., Kato, H., and Inoue, A.: High-strength hypereutectic Ti–Fe–Co bulk alloy with good ductility. Philos. Mag. Lett. 84, 359 (2004).
4.Park, J.M., Mattern, N., Kühn, U., Eckert, J., Kim, K.B., Kim, W.T., Chattopadhyay, K., and Kim, D.H.: High-strength bulk Al-based bimodal ultrafine eutectic composite with enhanced plasticity. J. Mater. Res. 24, 2605 (2009).
5.Ma, E.: Nanocrystalline materials: Controlling plastic instability. Nat. Mater. 2, 7 (2003).
6.Liddicoat, P.V., Liao, X.Z., Zhao, Y., Zhu, Y., Murashkin, M.Y., Lavernia, E.J., Valiev, R.Z., and Ringer, S.P.: Nanostructural hierarchy increases the strength of aluminium alloys. Nat. Commun. 1, 1 (2010).
7.Wang, Y., Chen, M., Zhou, F., and Ma, E.: High tensile ductility in a nanostructured metal. Nature 419, 912 (2002).
8.Koch, C.C.: Optimization of strength and ductility in nanocrystalline and ultrafine grained metals. Scr. Mater. 49, 657 (2003).
9.Lee, C.H., Hong, S.H., Kim, J.T., Park, H.J., Song, G.A., Park, J.M., Suh, J.Y., Seo, Y., Qian, M., and Kim, K.B.: Chemical heterogeneity-induced plasticity in Ti–Fe–Bi ultrafine eutectic alloys. Mater. Des. 60, 363 (2014).
10.Reyes, R.V., Bello, T.S., Kakitani, R., Costa, T.A., Garcia, A., Cheung, N., and Spinelli, J.E.: Tensile properties and related microstructural aspects of hypereutectic Al–Si alloys directionally solidified under different melt superheats and transient heat flow conditions. Mater. Sci. Eng., A 685, 235 (2017).
11.Eskin, D.G. and Katgerman, L.: Solidification phenomena related to direct chill casting of aluminium alloys: Fundamental studies and future challenges. Mater. Technol. 24, 152 (2009).
12.Jackson, K.A. and Hunt, J.D.: Lamellar and rod eutectic growth. Dyn. Curved Front 236, 363 (1988).
13.Jones, H.: Some effects of solidification kinetics on microstructure formation in aluminium-base alloys. Mater. Sci. Eng., A 413–414, 165 (2005).
14.Mertinger, V., Szabó, G., Bárczy, P., Kovács, Á., and Czél, G.: Gravity influenced convection in Al–Ni melt. Mater. Sci. Forum 215–216, 331 (1996).
15.Juarez-Hernandez, A. and Jones, H.: Growth temperature measurements and solidification microstructure selection of primary Al3Ni and eutectic in the αAl–Al3Ni. Scr. Mater. 38, 729 (1998).
16.Zhuang, Y.X., Zhang, X.M., Zhu, L.H., and Hu, Z.Q.: Eutectic spacing and faults of directionally solidified Al–Al3Ni eutectic. Sci. Technol. Adv. Mater. 2, 37 (2001).
17.Verissimo, N.C., Brito, C., Santos, W.L.R., Cheung, N., Spinelli, J.E., and Garcia, A.: Interconnection of Zn content, macrosegregation, dendritic growth, nature of intermetallics and hardness in directionally solidified Mg–Zn alloys. J. Alloys Compd. 662, 1 (2016).
18.Kim, J.T., Lee, S.W., Hong, S.H., Park, H.J., Park, J.Y., Lee, N., Seo, Y., Wang, W.M., Park, J.M., and Kim, K.B.: Understanding the relationship between microstructure and mechanical properties of Al–Cu–Si ultrafine eutectic composites. Mater. Des. 92, 1038 (2016).
19.Ramakrishnan, B.P., Lei, Q., Misra, A., and Mazumder, J.: Effect of laser surface remelting on the microstructure and properties of Al–Al2Cu–Si ternary eutectic alloy. Sci. Rep. 7, 1 (2017).
20.Tiller, W.A.: Liquid Metals and Solidification (ASM, Cleveland, 1958); p. 276.
21.Silva, B.L., da Silva, V.C.E., Garcia, A., and Spinelli, J.E.: Effects of solidification thermal parameters on microstructure and mechanical properties of Sn–Bi solder alloys. J. Electron. Mater. 46, 1754 (2017).
22.Bertelli, F., Freitas, E.S., Cheung, N., Arenas, M.A., Conde, A., de Damborenea, J., and Garcia, A.: Microstructure, tensile properties and wear resistance correlations on directionally solidified Al–Sn–(Cu; Si) alloys. J. Alloys Compd. 695, 3621 (2017).
23.Liebermann, : Rapidly Solidified Alloys: Processes–Structures–Properties–Applications (Materials Engineering), 1st ed. (CRC Press, Boca Raton, 1993); p. 808.
24.Gündüz, M. and Çadırlı, E.: Directional solidification of aluminium-copper alloys. Mater. Sci. Eng., A 327, 167 (2002).
25.Çadırlı, E., Büyük, U., Engin, S., and Kaya, H.: Effect of silicon content on microstructure, mechanical and electrical properties of the directionally solidified Al-based quaternary alloys. J. Alloys Compd. 694, 471 (2017).
26.Quaresma, J.M.V., Santos, C.A., and Garcia, A.: Correlation between unsteady-state solidification conditions, dendrite spacings, and mechanical properties of Al–Cu alloys. Metall. Mater. Trans. A 31, 3167 (2000).
27.Mondolfo, L.F.: Aluminum Alloys: Structure and Properties, 1st ed, (Butterworth-Heinemann, London, 1976); p. 513.
28.Liao, H.C., Zhang, M., Bi, J.J., Ding, K., Xi, X., and Wu, S.Q.: Eutectic solidification in near-eutectic Al–Si casting alloys. J. Mater. Sci. Technol. 26, 1089 (2010).
29.Tiedje, N.S., Taylor, J.A., and Easton, M.A.: Feeding and distribution of porosity in cast Al–Si alloys as function of alloy composition and modification. Metall. Mater. Trans. A 43, 4846 (2012).
30.Lee, S.W., Kim, J.T., Hong, S.H., Park, H.J., Park, J.Y., Lee, N.S., Seo, Y., Suh, J.Y., Eckert, J., Kim, D.H., Park, J.M., and Kim, K.B.: Micro-to-nano-scale deformation mechanisms of a bimodal ultrafine eutectic composite. Sci. Rep. 4, 1 (2014).
31.Park, J.M., Kim, K.B., Kim, D.H., Mattern, N., Li, R., Liu, G., and Eckert, J.: Multi-phase Al-based ultrafine composite with multi-scale microstructure. Intermetallics 18, 1829 (2010).
32.Kurz, W. and Fisher, D.J.: Fundamentals of Solidification, 3rd ed. (Trans Tech Publications Ltd., Zurich, Switzerland, 1992); p. 93.
33.Grugel, R.N., Lograsso, T.A., and Hellawell, A.: The solidification of monotectic alloys—Microstructures and phase spacings. Metall. Trans. A 15, 1003 (1984).
34.Hall, E.O.: The deformation and ageing of mild steel: III discussion of results. Proc. Phys. Soc., Sect. B 64, 747 (1951).
35.Ghassemali, E., Riestra, M., Bogdanoff, T., Kumar, B.S., and Seifeddine, S.: Hall–Petch Equation in a Hypoeutectic Al–Si Cast Alloy: Grain Size vs. Secondary Dendrite Arm Spacing (ICTP, Cambridge, U.K., 2017); p. 17.
36.Chen, C.L., West, G.D., and Thomson, R.C.: Characterisation of intermetallic phases in multicomponent Al–Si casting alloys for engineering applications. Mater. Sci. Forum 519–521, 359 (2006).

Keywords

Slow and rapid cooling of Al–Cu–Si ultrafine eutectic composites: Interplay of cooling rate and microstructure in mechanical properties

  • Guilherme Lisboa de Gouveia (a1), Rafael Kakitani (a2), Leonardo Fernandes Gomes (a1), Conrado Ramos Moreira Afonso (a1), Noé Cheung (a2) and José Eduardo Spinelli (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed