Skip to main content Accessibility help

Size-dependent strength in nanolaminate metallic systems

  • Ioannis N. Mastorakos (a1), Aikaterini Bellou (a1), David F. Bahr (a1) and Hussein M. Zbib (a1)


The effect of layer thickness on the hardness of nanometallic material composites with both coherent and incoherent interfaces was investigated using nanoindentation. Then, atomistic simulations were performed to identify the critical deformation mechanisms and explain the macroscopic behavior of the materials under investigation. Nanocomposites of different individual layer thicknesses, ranging from 1–30 nm, were manufactured and tested in nanoindentation. The findings were compared to the stress–strain curves obtained by atomistic simulations. The results reveal the role of the individual layer thickness as the thicker structures exhibit somehow different behavior than the thinner ones. This difference is attributed to the motion of the dislocations inside the layers. However, in all cases the hybrid structure was the strongest, implying that a particular improvement to the mechanical properties of the coherent nanocomposites can be achieved by adding a body-centered cubic layer on top of a face-centered cubic bilayer.


Corresponding author

a)Address all correspondence to this author. e-mail:


Hide All
1.Misra, A., Demkowicz, M.J., Wang, J., and Hoagland, R.G.: The multiscale modeling of plastic deformation in metallic nanolayered composites. JOM 60(4), 39 (2008).
2.Hoagland, R.G., Kurtz, R.J., and Henager, C.H. Jr.: Slip resistance of interfaces and the strength of metallic multilayer composites. Scr. Mater. 50, 775 (2004).
3.Wang, J., Hoagland, R.G., and Misra, A.: Mechanics of nanoscale metallic multilayers: From atomic-scale to micro-scale. Scr. Mater. 60(12), 1067 (2009).
4.Tokarz, A., Fraczek, T., Balaga, Z., and Nitkiewicz, Z.: Structure, hardness and thermal stability of electrodeposited Cu/Ni nanostructured multilayers. Rev. Adv. Mater. Sci. 15(3), 247 (2007).
5.Misra, A., Kung, H., Hammon, D., Hoagland, R.G., and Nastasi, M.: Damage mechanisms in nanolayered metallic composites. Int. J. Damage Mech. 12, 365 (2003).
6.Misra, A., Hirth, J.P., and Hoagland, R.G.: Length-scale-dependent deformation mechanisms in incoherent metallic multilayered composites. Acta Mater. 53(18), 4817 (2005).
7.Misra, A. and Hoagland, R.G.: Effects of elevated temperature annealing on the structure and hardness of copper/niobium nanolayered films. J. Mater. Res. 20(8), 2046 (2005).
8.Schuh, C.A., Nieh, T.G., and Yamasaki, T.: Hall-Petch breakdown manifested in abrasive wear resistance of nanocrystalline nickel. Scr. Mater. 46(10), 735 (2002).
9.Conrad, H. and Narayan, J.: Mechanisms for grain size hardening and softening in Zn. Acta Mater. 50(20), 5067 (2002).
10.Yip, S.: Nanocrystals—The strongest size. Nature 391(6667), 532 (1998).
11.Kim, H.S., Estrin, Y., and Bush, M.B.: Plastic deformation behaviour of fine-grained materials. Acta Mater. 48(2), 493 (2000).
12.Wang, Y.B., Li, B.Q., Sui, M.L., and Mao, S.X.: Deformation-induced grain rotation and growth in nanocrystalline Ni. Appl. Phys. Lett. 92(1), 011903 (2008).
13.Nix, W.D.: Yielding and strain hardening of thin metal films on substrates. Scr. Mater. 39(4/5), 545 (1998).
14.Akasheh, F., Zbib, H.M., Hirth, J.P., Hoagland, R.G., and Misra, A.: Dislocation dynamics analysis of dislocation intersections in nanoscale multilayer metallic composites. J. Appl. Phys. 101, 084314 (2007).
15.Freund, L.B.: The stability of a dislocation threading a strained layer on a substrate. J. Appl. Mech. Techol Phys. 54(3), 553 (1987).
16.Hoagland, R.G., Mitchell, T.E., Hirth, J.P., and Kung, H.: On the strengthening effects of interfaces in multilayer fcc metallic composites. Philos. Mag. A 82(4), 643 (2002).
17.Mastorakos, I.N., Zbib, H.M., and Bahr, D.F.: Deformation mechanisms and strength in metallic nanolaminate composites with coherent and incoherent interfaces. Appl. Phys. Lett. 94 (17), 054117 (2009).
18.Overman, N.R., Overman, C.T., Zbib, H.M., and Bahr, D.F.: Yield and deformation in biaxially stressed multilayer metallic thin films. J. Eng. Mater. Techol. 131(4), 041203 (2009).
19.Mastorakos, I.N., Abdolrahim, N., and Zbib, H.M.: Deformation mechanisms in composite nano-layered metallic and nanowire structures. Int. J. Mech. Sci. 52, 295 (2010).
20.Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Comp. Phys. 117(1), (1995).
21.Daw, M. and Baskes, M.: Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals. Phys. Rev. B 29, 6443 (1983).
22.Voter, A.F. and Chen, S.P.: Accurate Interatomic Potentials for Ni, Al and Ni3Al, in Characterization of Defects in Materials, edited by Siegel, R.W., Weertman, J.R., and Sinclair, R. (Mater. Res. Soc. Symp. Proc. 82, Pittsburgh, PA, 1987), p. 175.
23.Johnson, R.A.: Alloy models with the embedded atom method. Phys. Rev. B 39(17), 12554 (1989).
24.Mishin, Y., Mehl, M.J., Papaconstantopoulos, D.A., Voter, A.F., and Kress, J.D.: Structural stability and lattice defects in copper: Ab initio, tight-binding and embedded-atom calculations. Phys. Rev. B 63, 224106 (2001).
25.Johnson, R.A. and Oh, D.J.: Analytic embedded atom method model for bcc. J. Mater. Res. 4(5), 1195 (1989).
26.Zhang, Q., Lai, W.S., and Liu, B.X.: Atomic structure and physical properties of Ni-Nb amorphous alloys determined by an n-body potential. J. Non-Cryst. Solids 261, 137 (2000).
27.Demkowicz, M.J. and Hoagland, R.G.: Structure of Kurdjumov-Sachs interfaces in simulations of a copper-niobium bilayer. J. Nucl. Mater. 372, 45 (2008).
28.Melchionna, S., Ciccotti, G., and Holian, B.L.: Hoover NPT dynamics for systems varying in shape and size. Mol. Phys. 78, 533 (1993).
29.Henager, C.H. Jr., Kuntz, R.J., and Hoagland, R.G.: Interactions of dislocations with disconnections in fcc metallic nanolayered materials. Philos. Mag. 84(22), 2277 (2004).
30.Hoagland, R.G., Hirth, J.P., and Misra, A.: On the role of weak interfaces in blocking slip in nanoscale layered composites. Philos. Mag. 86(23), 3537 (2006).
31.Anderson, P.M., Bingert, J.F., Misra, A., and Hirth, J.P.: Rolling textures in nanoscale Cu/Nb multilayers. Acta Mater. 51(20), 6059 (2003).
32.Misra, A., Hirth, J.P., and Kung, H.: Single-dislocation-based strengthening mechanisms in nanoscale metalic multilayers. Philos. Mag. A 82(16), 2935 (2002).
33.Lu, L., Chen, X., Huang, X., and Lu, K.: Revealing the maximum strength in nanotwinned copper. Science 3232, 607 (2009).
34.Nyilas, K., Misra, A., and Ungar, T.: Micro-strains in cold rolled Cu–Nb nanolayered composites determined by X-ray line profile analysis. Acta Mater. 54(3), 751 (2005).
35.Mara, N.A., Bhattacharyya, D., Hoagland, R.G., and Misra, A.: Tensile behavior of 40 nm Cu/Nb nanoscale multilayers. Scr. Mater. 58(10), 874 (2008).
36.Bellou, A., Overman, C.T., Zbib, H.M., Bahr, D.F., and Misra, A.: Strength and strain hardening behavior of Cu-based bilayers and trilayers. Scr. Mater. 64, 641 (2011).


Related content

Powered by UNSILO

Size-dependent strength in nanolaminate metallic systems

  • Ioannis N. Mastorakos (a1), Aikaterini Bellou (a1), David F. Bahr (a1) and Hussein M. Zbib (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.