Skip to main content Accessibility help
×
Home

Single-walled carbon nanotube-supported platinum nanoparticles as fuel cell electrocatalysts

  • Esperanza Lafuente (a1), Edgar Muñoz (a1), Ana M. Benito (a1), Wolfgang K. Maser (a1), M. Teresa Martínez (a1), Francisco Alcaide (a2), Larraitz Ganborena (a2), Ione Cendoya (a2), Oscar Miguel (a2), Javier Rodríguez (a2), Esteban P. Urriolabeitia (a3) and Rafael Navarro (a3)...

Abstract

Single-walled carbon nanotubes (SWNTs) have been used as electrocatalyst support for fuel cells. A toluene solution of a platinum salt, bis(dibenzylideneacetone) platinum, has been used for the first time to decorate the outer surface of SWNT bundles with Pt nanoparticles. The obtained Pt/SWNT materials were then used as catalytic layer in electrodes for fuel cell electrocatalysis. The used platinum salt concentration in the initial SWNT dispersion determined the Pt nanoparticle size and, consequently, the activity of the Pt/SWNT electrodes toward the oxygen reduction reaction. The achieved results were compared with those corresponding to a commercial Pt/carbon black catalyst with similar Pt loading and surface area.

Copyright

Corresponding author

a) Address all correspondence to this author. e-mail: mtmartinez@carbon.icb.csic.es

References

Hide All
1.Ansón, A., Jagiello, J., Parra, J.B., Sanjuán, M.L., Benito, A.M., Maser, W.K., Martínez, M.T.: Porosity, surface area, surface energy, and hydrogen adsorption in nanostructured carbons. J. Phys. Chem. B 108, 15820 (2004).
2.Huang, W., Yang, C., Zhang, S.: Simultaneous determination of 2-nitrophenol and 4-nitrophenol based on the multi-wall carbon nanotubes Nafion-modified electrode. Anal. Bioanal. Chem. 375, 703 (2003).
3.Chan, K-Y., Ding, J., Ren, J., Cheng, S., Tsang, K.Y.: Supported mixed metal nanoparticles as electrocatalysts in low temperature fuel cells. J. Mater. Chem. 14, 505 (2004).
4.Ye, X.R., Lin, Y., Wai, C.M.: Decorating catalytic palladium nanoparticles on carbon nanotubes in supercritical carbon dioxide. Chem. Commun. 5, 642 (2003).
5.Armadi, T.S., Wang, Z.L., Green, T.C., Henglein, A., El-Sayed, M.A.: Shape-controlled synthesis of colloidal platinum nanoparticles. Science 272, 1924 (1996).
6.Boutonnet, M., Kizling, J., Stenius, P.: The preparation of monodispersed colloidal metal particles from microemulsions. Colloids Surf. 5, 209 (1982).
7.López-Quintela, M. Arturo, Rivas, J.: Chemical reactions in microemulsions: A powerful method to obtain ultrafine particles. J. Colloid Interface Sci. 158, 446 (1993).
8.Okitsu, K., Yue, A., Tanabe, S., Matsumoto, H.: Sonochemical preparation and catalytic behavior of highly dispersed palladium nanoparticles on alumina. Chem. Mater. 12, 3006 (2000).
9.Fujimoto, T., Teraushi, S., Umehara, H., Kojima, I., Henderson, W.: Sonochemical preparation of single-dispersion metal nanoparticles from metal salts. Chem. Mater. 13, 1057 (2001).
10.Tu, W.X., Liu, H.Y.: Continuous synthesis of colloidal metal nanoclusters by microwave irradiation. Chem. Mater. 12, 564 (2000).
11.Komarneni, S., Li, D.S., Newalkar, B., Katsuki, H., Bhalla, A.S.: Microwave-polyol process for Pt and Ag nanoparticles. Langmuir 18, 5959 (2002).
12.Thompsett, D. Catalysts for the proton exchange membrane fuel cell, in Fuel Cell Technology Handbook, edited by Hoogers, G. (CRC Press, New York, 2003).
13.Petrow, H.G. and Allen, R.J.: Catalytic platinum metal particles on a substrate and method of preparing the catalysts. U.S. Patent No. 3992331 (1976).
14.Prabhuram, J., Wang, X., Hui, C.L., Hsing, I.M.: Synthesis and characterization of surfactant-stabilized Pt/C nanocatalysts for fuel-cell applications. J. Phys. Chem. B 107, 11057 (2003).
15.Ajayan, P.M., Iijima, S.: Capillarity-induced filling of carbon nanotubes. Nature 361, 333 (1993).
16.Hsin, Y.L., Hwang, K.C., Chen, F.R., Kai, J-J.: Production an in situ metal filling of carbon nanotubes in water. Adv. Mater. 13, 830 (2001).
17.Che, G.L., Lakshmi, B.B., Martín, C.R., Fisher, E.R.: Metal nanocluster-filled carbon nanotubes: Catalytic properties and possible applications in electrochemical energy storage and production. Langmuir 15, 750 (1999).
18.Liu, Z.L., Lin, X.H., Lee, J.Y., Zhang, W., Han, M., Gan, L.M.: Preparation and characterization of platinum-based electrocatalysts of multiwalled carbon nanotubes for proton exchange membrane fuel cells. Langmuir 18, 4054 (2002).
19.Baughman, R.H., Zakhidov, A.A., de Heer, W.A.: Carbon nanotubes: The route towards applications. Science 297, 787 (2002).
20.Ajayan, P.M.: Nanotubes from carbon. Chem. Rev. 99, 1787 (1999).
21.Bernard, C., Planeix, J.M., Valérie, B.: Fullerene-based materials as new support media in heterogeneous catalysis by metals. Appl. Catal., A 173, 175 (1998).
22.Xue, B., Chen, P., Hong, Q., Lin, J., Tan, K.L.: Growth of Pd, Pt, Ag and Au nanoparticles on carbon nanotubes. J. Mater. Chem. 11, 2378 (2001).
23.Chen, P., Wu, X., Lin, J., Tan, K.L.: Synthesis of Cu nanoparticles and microsized fibers by using carbon nanotubes as a template. J. Phys. Chem. B 103, 4559 (1999).
24.Planeix, J.M., Coustel, N., Coq, B., Brotons, V., Kumbhar, P.S., Dutartre, R., Geneste, P., Bernier, P., Ajayan, P.M.: Applications of carbon nanotubes as supports in heterogeneous catalysis. J. Am. Chem. Soc. 116, 7935 (1994).
25.Yu, R., Chen, L., Liu, Q., Lin, J., Tan, K.L., Ng, S.C., Chan, H.S.O., Xu, G.Q., Hor, T.S.A.: Platinum deposition on carbon nanotubes via chemical modification. Chem. Mater. 10, 718 (1998).
26.Lordi, V., Yao, N., Wei, J.: Method for supporting platinum on single-walled carbon nanotubes for a selective hydrogenation catalyst. Chem. Mater. 13, 733 (2001).
27.Ebbesen, T.W., Hiura, H., Bisher, M.E., Treacy, M.M.J., Shreeve-Keyer, J.L., Haushalter, R.C.: Decoration of carbon nanotubes. Adv. Mater. 8, 155 (1996).
28.Ang, L.M., Hor, T.S.A., Xu, G.Q., Tung, C.H., Zhao, S.P., Wang, J.L.S.: Electroless plating of metals onto carbon nanotubes activated by a single-step activation method. Chem. Mater. 11, 2115 (1999).
29.EG&G Services Parsons Inc.: Science Applications International Corporation: Fuel Cell Handbook, 5th ed. (U.S. Department of Energy, Morgantown, WV, 2002), p. 3.
30.Li, W., Liang, C., Qiu, J., Zhou, W., Han, H., Wei, Z., Sun, G., Xin, Q.: Carbon nanotubes as support for cathode catalyst a direct methanol fuel cell. Carbon 40, 791 (2002).
31.Li, W., Liang, C., Zhou, W., Qiu, J., Zhou, Z., Sun, G., Xin, Q.: Preparation and characterization of multiwalled carbon nanotube-supported platinum for cathode catalysts of direct methanol fuel cells. J. Phys. Chem. B 107, 6292 (2003).
32.Román-Martínez, M.C., Cazorla-Amorós, D., Linares-Solano, A., de Lecea, C. Salinas-Martínez, Yamashita, H., Anpo, M.: Metal-support interaction in Pt/C catalysts. Influence of the support surface chemistry and the metal precursor. Carbon 33, 3 (1995).
33.Lordi, V., Yao, N., Wei, J.: Method for supporting platinum on single-walled carbon nanotubes for a selective hydrogenation catalyst. Chem. Mater. 13, 733 (2001).
34.Guo, D-J., Lin, H-L.: High dispersion and electrocatalytic properties of Pt nanoparticles on SWNT bundles. J. Electroanal. Chem. 573, 197 (2004).
35.Wu, G., Chen, Y-S., Xu, B-Q.: Remarkable support effect of SWNTs in Pt catalysis for methanol electrooxidation. Electrochem. Commun. 7, 1237 (2005).
36.Liu, Z., Gan, L.M., Hong, L., Chen, W., Lee, J.Y.: Carbon-supported Pt nanoparticles as catalysts for proton exchange membrane fuel cells. J. Power Sources 139, 73 (2005).
37.Joo, S.H., Choi, S.J., Oh, I., Kwak, J., Liu, Z., Terasaki, O., Ryoo, R.: Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles. Nature 412, 169 (2001).
38.Journet, C., Maser, W.K., Bernier, P., de Chapelle, A. Lamy la, Lefrant, S., Deniard, P., Lee, R., Fisher, J.E.: Large-scale production of single-walled carbon nanotubes by the electric-arc technique. Nature 388, 756 (1997).
39.Picó, F., Rojo, J.M., Sanjuán, M.L., Ansón, A., Benito, A.M., Callejas, M.A., Maser, W.K., Martínez, M.T.: Single-walled carbon nanotubes as electrodes in supercapacitors. J. Electrochem. Soc. 151 A831(2004).
40.Moseley, K., Maitlis, P.M.: Acetylenes and noble metal compounds. Part XI. Reactions of di-methyl acetylenedicarboxylate with dibenzylideneaceton-palladium and -platinum complexes: Pallada- and platina-cyclopetadienes. J. Chem. Soc., Dalton Trans. 2, 169 (1974).
41.Litster, S., McLean, G.: PEM fuel electrodes. J. Power Sources 130, 61 (2004).
42.Woods, R.: Hydrogen adsorption on platinum, iridium and rhodium electrodes at reduced temperatures and the determination of real surface area. J. Electroanal. Chem. 49, 217 (1974).
43.Souza, M.M.V.M., Aranda, D.A.G., Perez, C.A.C., Schmal, M.: Surface characterization of zirconia-coated alumina as support for Pt particles. Phys. Status Solidi A 187, 297 (2001).
44.Mista, W., Zawadzki, M., Wrzyszcz, J., Grabowska, H., Trawczynski, J.: Thermal stability of platinum supported zinc aluminate combustion catalysts. Pol. J. Chem. 75, 1561 (2001).
45.Zawadzki, M., Mista, W., Kepinski, L.: Metal-support effects of platinum supported on zinc aluminate. Vacuum 63, 291 (2001).
46.Warren, B.E.: X-Ray Diffraction. (Addison-Wesley, Reading, MA, 1996).
47.Terrones, M., Hsu, W.K., Schilder, A., Terrones, H., Grobert, N., Hare, J.P.: Novel nanotubes and encapsulated nanowires. Appl. Phys. A 66, 307 (1998).
48.Gattrell, M., MacDougall, B. The oxygen reduction/evolution reaction, in Handbook of Fuel Cell Technology, Vol. 2, Part 5, edited by Vielstich, W., Lamm, A., and Gasteiger, H.A., (John Wiley & Sons Ltd., Chichester, UK, 2003).
49.Lin, Y.H., Cui, X.L., Yen, C., Wai, C.M.: Platinum/carbon nanotube nanocomposite synthesized in supercritical fluid as electrocatalysts for low-temperature fuel cells. J. Phys. Chem. B 109, 14410 (2005).
50.Huang, J.E., Guo, D.J., Yao, Y.G., Li, H.L.: High dispersion and electrocatalytic properties of platinum nanoparticles on surface-oxidized single-walled carbon nanotubes. J. Electroanal. Chem. 577, 93 (2005).
51.Guo, J.W., Zhao, T.S., Prabhuram, J., Wong, C.W.: Preparation and the physical/electrochemical properties of a Pt/C nanocatalyst stabilized by citric acid for polymer electrolyte fuel cells. Electrochim. Acta 50, 1973 (2005).
52.Rajalakshmi, N., Ryu, H., Shaijumon, M.M., Ramaprabhu, S.: Performance of polymer electrolyte membrane fuel cells with carbon nanotubes as oxygen reduction catalyst support material. J. Power Sources 140, 250 (2005).
53.Kinoshita, K.: Carbon: Electrochemical and Physicochemical Properties (John Wiley, New York, 1976), p 299.
54.Christensen, P.A., Hammet, A.: Techniques and Mechanism in Electrochemistry. (Chapman & Hall, London, 1994), p 228.
55.Wang, X., Kumar, R., Myers, D.J.: Effect of voltage on platinum dissolution. Relevance to polymer electrolyte fuel cells. Electrochem. Solid State Lett. 9 A225(2006).
56.Maillard, F., Eikerling, M., Cherstiouk, O.V., Schreier, S., Savinova, E., Stimming, U.: Size effects on reactivity of Pt nanoparticles in CO monolayer oxidation: The role of surface mobility. Faraday Discuss. 125, 357 (2004).
57.Raghuveer, V., Manthiram, A.: Mesoporous carbons with controlled porosity as an electrocatalytic support for methanol oxidation. J. Electrochem. Soc. 152 A1504(2005).
58.Prabhuram, J., Zhao, T.S., Tang, Z.K., Chen, R., Liang, Z.X.: Multiwalled carbon nanotube supported PtRu for the anode of direct methanol fuel cells. J. Phys. Chem. B 110, 5245 (2006).

Keywords

Related content

Powered by UNSILO

Single-walled carbon nanotube-supported platinum nanoparticles as fuel cell electrocatalysts

  • Esperanza Lafuente (a1), Edgar Muñoz (a1), Ana M. Benito (a1), Wolfgang K. Maser (a1), M. Teresa Martínez (a1), Francisco Alcaide (a2), Larraitz Ganborena (a2), Ione Cendoya (a2), Oscar Miguel (a2), Javier Rodríguez (a2), Esteban P. Urriolabeitia (a3) and Rafael Navarro (a3)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.