Skip to main content Accessibility help

A simplified analytical model of diamond growth in direct current arcjet reactors

  • David S. Dandy (a1) and Michael E. Coltrin (a2)


A simplified model of a direct current arcjet-assisted diamond chemical vapor deposition reactor is presented. The model is based upon detailed theoretical analysis of the transport and chemical processes occurring during diamond deposition, and is formulated to yield closed-form solutions for diamond growth rate, defect density, and heat flux to the substrate. In a direct current arcjet reactor there is a natural division of the physical system into four characteristic domains: plasma torch, free stream, boundary layer, and surface, leading to the development of simplified thermodynamic, transport, and chemical kinetic models for each of the four regions. The models for these four regions are linked to form a single unified model. For a relatively wide range of reactor operating conditions, this simplified model yields results that are in good quantitative agreement with stagnation flow models containing detailed multicomponent transport and chemical kinetics. However, in contrast to the detailed reactor models, the model presented here executes in near real-time on a computer of modest size, and can therefore be readily incorporated into process control models or global dynamic loop simulations.



Hide All
1Cerio, F. M. and Weimer, W. A., Rev. Sci. Instrum. 63, 2065 (1992).
2Woodin, R. L., Bigelow, L. K., and Cann, G.L., Proceedings of Applications of Diamond Films and Related Materials (Auburn, AL, 1991), p. 439.
3Rongzhi, L., Hailiang, S., Zhen, Y., Sen, T., and Hesun, Z., Proceedings of Applications of Diamond Films and Related Materials (Auburn, AL, 1991), p. 207.
4Goodwin, D. G., Appl. Phys. Lett. 59, 277 (1991).
5Coltrin, M. E. and Dandy, D. S., J. Appl. Phys. 74, 5803 (1993).
6Yu, B. W. and Girshick, S. L., J. Appl. Phys. 75, 3914 (1994).
7Goodwin, D. G., J. Appl. Phys. 74, 6888 (1993).
8Godwin, D. G., J. Appl. Phys. 74, 6895 (1993).
9Young, R. M., Surf. Coat. Technol. 68/69, 384 (1994).
10Sandier, S. I., Chemical and Engineering Thermodynamics, 2nd ed. (John Wiley & Sons, New York, 1989).
11Miller, J. A. and Melius, C. F., Combust. Flame 91, 21 (1992).
12Coltrin, M. E., Kee, R. J., Evans, G. H., Meeks, E., Dandy, D. S., Rupley, F., and Grcar, J. F., “SPIN: a Fortran program for modeling one-dimensional rotating-disk/stagnation-flow chemical vapor deposition reactors,” Report No. SAND91-8OO3 (1991).
13Frenklach, M., Wang, H., Bowman, C. T., Hanson, R. K., Smith, G. P., Golden, D. M., Gardiner, W. C., and Lissianski, V., Proceedings of 25th International Symposium on Combustion (Irvine, CA, 1994), poster presentation.
14Rosner, D. E., Transport Processes in Chemically Reacting Flow Systems. (Butterworths, Boston, MA, 1986).
15Harris, S. J., Appl. Phys. Lett. 56, 2298 (1990).
16Westbrook, C. K., Warnatz, J., and Pitz, W.J., Proceedings of Twenty-second Symposium (International) on Combustion.(Seattle, WA, 1988), p. 893.
17Kondoh, E., Ohta, T., Mitomo, T., and Ohtsuka, K., Appl. Phys. Lett. 59, 488 (1991).
18Kondoh, E., Ohta, T., Mitomo, T., and Ohtsuka, K., J. Appl. Phys. 73, 3041 (1993).
19Harris, S. J. and Weiner, A. M., J. Appl. Phys. 75, 5026 (1994).
20Butler, J. E. and Woodin, R. L., Philos. Trans. R. Soc. 342, 209 (1993).
21Newton, M. E., Cox, A., and Baker, J.M., personal communication (1994).
22Hirschfelder, J. O., Curtiss, C. F., and Bird, R. B., Molecular Theory of Gases and Liquids, 1st ed. (John Wiley and Sons, New York, 1954), Vol. 1.
23Grew, K. E. and Ibbs, T. L., Thermal Diffusion in Gases. (Cambridge University Press, Cambridge, 1952).
24Warnatz, J., in Numerical Methods in Flame Propagation, edited by Peters, N. and Warnatz, J. (Friedr. Vieweg and Sohn, Wiesbaden, 1982).
25Brau, C. C. and Jonkman, R. M., J. Chem. Phys. 52, 477 (1970).
26Mathur, S., Tondon, P.K., and Saxena, S. C., Molec. Phys. 12, 569 (1967).
27Kee, R. J., Dixon-Lewis, G., Warnatz, J., Coltrin, M. E., and Miller, J.A., “A Fortran computer code package for the evaluation of gas-phase multicomponent transport properties,” Report No. SAND86-8246 (1986).

A simplified analytical model of diamond growth in direct current arcjet reactors

  • David S. Dandy (a1) and Michael E. Coltrin (a2)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed