Skip to main content Accessibility help
×
Home

Silver-palladium alloy particle production by spray pyrolysis

  • Tammy C. Pluym (a1), Toivo T. Kodas (a1), Lu-Min Wang (a2) and Howard D. Glicksman (a3)

Abstract

Spray pyrolysis was used to produce submicron Ag-Pd metal alloy particles for applications in electronic component fabrication. The particles were prepared in nitrogen carrier gas from metal nitrate precursor solutions with various compositions. The Ag-Pd alloy was the predominant phase for reactor temperatures of 700 °C and above for all compositions. The 70-30 Ag-Pd partcles were fully dense at 700 °C, but an increased reaction temperature was necessary to produce dense particles at higher Pd to Ag ratios. The extent of palladium oxidation was suppressed with increased amounts of Ag. Single-crystal particles could be produced at sufficiently high temperatures. These results show that particle phase composition, size, oxidation behavior, and morphology can be controlled by the Ag-Pd ratio in the precursor solution and by the reaction temperature.

Copyright

Corresponding author

a)Author to whom correspondence should be addressed.

References

Hide All
1Amundsen, A. R. and Stem, E. W., in Kirk-Othmer Encyclopedia of Chemical Technology (John Wiley Interscience, New York, 1978), Vol. 18, p. 228.
2Newnham, R. E. and Shrout, T. R., in Kirk-Othmer Encyclopedia of Chemical Technology (John Wiley Interscience, New York, 1990), Vol. 1, p. 601.
3Asada, E., Ono, S., and Matsuo, M., Jpn. Patent 6331522 (1988).
4Borland, W., in Electronic Materials Handbook (ASM INTERNATIONAL, Metals Park, OH, 1989), Vol. 1, p. 332.
5Massalski, T. B. and Okamoto, H., in Binary Alloy Phase Diagrams, 2nd ed. (ASM INTERNATIONAL, Materials Park, OH, 1990), p. 72.
6Ferrier, G. G., Berzins, A. R., and Davey, N. M., Metal Powder Report 41, 677 (1986).
7Hayashi, T., Ushijima, A., and Nakamura, Y., US Patent 4776883 (1988).
8Gurav, A. S., Kodas, T. T., Pluym, T. C., and Xiong, Y., Aerosol Sci. Technol. 19, 411 (1993).
9Kato, A., Takayama, A., and Morimitsu, Y., Nippon Kagaku Kaishi 12, 2342 (1985).
10Nagashima, K., Morimitsu, Y., and Kato, A., Nippon Kagaku Kaishi 12, 2293 (1987).
11Pluym, T. C., Lyons, S. W., Powell, Q. H., Gurav, A. S., Kodas, T. T., Wang, L. M., and Glicksman, H. D., Mater. Res. Bull. 28, 369 (1993).
12Pluym, T. C., Powell, Q. H., Gurav, A. S., Ward, T. L., Kodas, T. T., Wang, L. M., and Glicksman, H. D., J. Aerosol Sci. 24, 383 (1993).
13Lyons, S. W., Ortega, J., Wang, L. M., and Kodas, T.T., in Better Ceramics Through Chemistry V, edited by Hampden-Smith, M.J., Klemperer, W. G., and Brinker, C.J. (Mater. Res. Soc. Symp. Proc. 271, Pittsburgh, PA, 1992), p. 907.
14Zhang, S. C. and Messing, G. L., in Ceramic Powder Science III, edited by Messing, G.L., Hirano, S. I., and Hausner, H. (American Ceramic Society, Westerville, OH, 1990), p. 49.
15Zhang, S. C., Messing, G. L., and Borden, M., J. Am. Ceram. Soc. 73, 61 (1990).
16Makuta, F. and Inokuma, T., Int. J. for Hybrid Microelec. 6, 74 (1983).
17Pepin, J. G., Adv. Ceram. Mater. 3, 517 (1988).
18Cole, S. S. Jr., J. Am. Ceram. Soc. 68, C-106 (1985).
19Nagashima, K., Himeda, T., and Kato, A., J. Mater. Sci. 26, 2477 (1991).
20Lyons, S. W., Wang, L. M., and Kodas, T. T., Nanostruct. Mater. 1, 283 (1992).
21Peskin, R. L. and Raco, R. J., J. Acoustical Soc. Am. 35, 1378 (1963).
22Cole, S. S. Jr., J. Am. Ceram. Soc. 55, 296 (1972).
23Cullity, B. D., Elements of X-Ray Diffraction, 2nd ed. (Addison-Wesley Publishing Company, Inc., Reading, MA, 1978), p. 102.

Related content

Powered by UNSILO

Silver-palladium alloy particle production by spray pyrolysis

  • Tammy C. Pluym (a1), Toivo T. Kodas (a1), Lu-Min Wang (a2) and Howard D. Glicksman (a3)

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.