Hostname: page-component-84b7d79bbc-tsvsl Total loading time: 0 Render date: 2024-07-28T00:13:42.791Z Has data issue: false hasContentIssue false

Shape-Controllable Synthesis of Indium Oxide Structures: Nanopyramids and Nanorods

Published online by Cambridge University Press:  31 January 2011

Ye Zhang
Affiliation:
School of Physics, National Key Laboratory of Mesoscopic Physics, and Electron Microscopy Laboratory, Peking University, Beijing 100871, People's Republic of China
Hongbo Jia
Affiliation:
School of Physics, National Key Laboratory of Mesoscopic Physics, and Electron Microscopy Laboratory, Peking University, Beijing 100871, People's Republic of China
Dapeng Yu
Affiliation:
School of Physics, National Key Laboratory of Mesoscopic Physics, and Electron Microscopy Laboratory, Peking University, Beijing 100871, People's Republic of China
Xuhui Luo
Affiliation:
School of Physics, National Key Laboratory of Mesoscopic Physics, and Electron Microscopy Laboratory, Peking University, Beijing 100871, People's Republic of China
Zhensheng Zhang
Affiliation:
School of Physics, National Key Laboratory of Mesoscopic Physics, and Electron Microscopy Laboratory, Peking University, Beijing 100871, People's Republic of China
Xihong Chen
Affiliation:
School of Physics, National Key Laboratory of Mesoscopic Physics, and Electron Microscopy Laboratory, Peking University, Beijing 100871, People's Republic of China
Cheoljin Lee
Affiliation:
Department of Nanotechnology, Hanyang University, Seoul 133-791, Korea
Get access

Abstract

We describe a vapor-phase route to the controllable synthesis of indium oxide micro-and nanopyramids on the silicon wafer via selective epitaxial vapor-solid growth by a methane-assist thermal reduction method. X-ray diffraction, scanning electron microscopy, and transmission electron microscopy revealed that the pyramids were cubic single crystals with a tetragonal symmetry. The size, morphology, and density of pyramids could easily be controlled by tuning reaction parameters. The method has good compatibility with other procedures involved in the microfabrication processes. Laterally grown indium oxide nanorods on the silicon wafer were also prepared via a vapor-liquid-solid mechanism. Those crystalline In2O3 nanorods were about 100 nm in diameter and 1 μm in length. The as-synthesized indium oxide nanopyramids and nanorods could offer novel opportunities for both fundamental research and technological applications.

Type
Articles
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Hamberg, I. and Granqvist, C.G., J. Appl. Phys. 60, R123 (1986).CrossRefGoogle Scholar
2.Perera, A.G.U., Liu, H.C., and Francombe, M.H., Semiconductor Optical and Electro-Optical Devices (Academic Press, London, U.K., 2000).Google Scholar
3.Kim, H., Pique, A., Horwitz, J.S., Mattoussi, H., Murata, H., Kafafi, Z.H., and Chrisey, D.B., Appl. Phys. Lett. 74, 3444 (1999).CrossRefGoogle Scholar
4.Yumoto, H., Onozumi, S., Katoh, Y., Ishihara, M., and Kishi, K., Crystal Res. Technol. 31, 159 (1996).CrossRefGoogle Scholar
5.Hamberg, I. and Granqvist, C.G., Appl. Phys. Lett. 44, 721 (1984).CrossRefGoogle Scholar
6.Stucki, F., Bruesch, P., and Greuter, F., Surf. Sci. 189, 294 (1987).CrossRefGoogle Scholar
7.Lee, M.S., Choi, W.C., Kim, E.K., Kim, C.K., and Min, S.K., Thin Solid Films 279, 1 (1996).CrossRefGoogle Scholar
8.Tarsa, E.J., English, J.H., and Speck, J.S., Appl. Phys. Lett. 62, 2332 (1993).CrossRefGoogle Scholar
9.Fan, J.C.C., Bachner, F.J., and Foley, G.H., Appl. Phys. Lett. 31, 773 (1977).CrossRefGoogle Scholar
10.Zheng, M.J., Zhang, L.D., Zhang, X.Y., Zhang, J., and Li, G.H., Chem. Phys. Lett. 334, 298 (2001).CrossRefGoogle Scholar
11.Tahar, R.B.H., Ban, T., Ohya, Y., and Takahashi, Y., J. Appl. Phys. 82, 865 (1997).CrossRefGoogle Scholar
12.Ryabova, L.A., Salun, V.S., and Serbinov, I.A., Thin Solid Films 92, 327 (1982).CrossRefGoogle Scholar
13.Pan, Z.W., Dai, Z.R., and Wang, Z.L., Science 291, 1947 (2001); C.H. Liang, G.W. Meng, Y. Lei, F. Phillipp, and L.D. Zhang, Adv. Mater. 13, 1330 (2001); H.J. Zhou, W.P. Cai, and L.D. Zhang, Appl. Phys. Lett. 75, 495 (1999).CrossRefGoogle Scholar
14.Green, M.A., Zhao, J., and Wang, A., 2nd World Conference and Exhibition on Photovoltaic Solar Energy Conversion, Vienna, 1187 (1998).Google Scholar
15.Wang, Z.L., J. Phys. Chem. B 104, 1153 (2000); Y.G. Sun and Y.N. Xia, Science 298, 2176 (2002).CrossRefGoogle Scholar
16.Campbell, P. and Green, M.A., J. Appl. Phys. 62, 243 (1987).CrossRefGoogle Scholar
17.Chhowalla, M., Teo, K.B.K., Ducati, C., Rupesinghe, N.L., Amaratunga, G.A.J., Ferrari, A.C., Roy, D., Robertson, J., and Milne, W.I., J. Appl. Phys. 90, 3508 (2001).CrossRefGoogle Scholar
18.Wagner, R.S. and Ellis, W.C., Appl. Phys. Lett. 4, 89 (1964).CrossRefGoogle Scholar
19.Wagner, R.S. and Doherty, C.J., J. Electrochem. Soc. 115, 93 (1968).CrossRefGoogle Scholar
20.Fowler, R.H. and Nordheim, L.W., Proc. R. Soc. (London) A 119, 173 (1928).Google Scholar
21.Heer, W.A. de, Chätelain, A., and Ugarte, D., Science 270, 1179 (1995).CrossRefGoogle Scholar