Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-26T21:58:36.227Z Has data issue: false hasContentIssue false

Semiconducting BaTiO3 ceramic prepared by low temperature liquid phase sintering

Published online by Cambridge University Press:  31 January 2011

I. Zajc
Affiliation:
JoŽef Stefan Institute, Jamova 39, Ljubljana, Slovenia
M. Drofenik
Affiliation:
JoŽef Stefan Institute, Jamova 39, Ljubljana, Slovenia
Get access

Abstract

Donor-doped BaTiO3 ceramics were prepared by adding PbO B2O3 SiO2 as a sintering aid. Semiconducting BaTiO3 was obtained at a sintering temperature of 1100 °C. The sintered samples exhibit the Positive Temperature Coefficient of Resistivity (PTCR) effect, which depends on the amount of liquid phase, the concentration of the donor-dopant, and the sintering temperature. The cold resistivity of the samples decreases when the sintering temperature increases. The increase of the grain boundary resistivity and hence of the cold resistivity at lower sintering temperatures was explained by applying the diffusion grain boundary layer model.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Eror, N. G. and Smyth, D. M., in The Chemistry of Extended Defects in Nonmetallic Solids, edited by L., Eyring and M., O'Karfa (North-Holland, Amsterdam, 1970), pp. 6274.Google Scholar
2.Drofenik, M., J. Am. Ceram. Soc. 70 (5), 311314 (1987).CrossRefGoogle Scholar
3.Drofenik, M., Popoviċ, A., and Kolar, D., Am. Ceram. Soc. Bull. 63 (5), 702704 (1984).Google Scholar
4.Drofenik, M., J. Am. Ceram. Soc. 73 (6), 15871592 (1990).CrossRefGoogle Scholar
5.Drofenik, M., J. Am. Ceram. Soc. 75 (9), 23832389 (1992).CrossRefGoogle Scholar
6.Daniels, J. and Wernicke, R., Res. Repts. 31 (6), 544559 (1976).Google Scholar
7.Seuter, A. M. J. H., Phil. Res. Repts. Suppl. 3, 184 (1974).Google Scholar
8.Stubbs, J. M., Ph.D. Thesis, University of Missouri-Rolla (1980).Google Scholar
9.Rase, D. E. and Roy, R., J. Am. Ceram. Soc. 38 (3), 102113 (1955).CrossRefGoogle Scholar
10.Rase, D. E. and Roy, R., J. Am. Ceram. Soc. 38 (2), 389395 (1974).CrossRefGoogle Scholar
11.Matsuo, Y., Fujimura, M., Sasaki, H., Nagase, K., and Hayakawa, S., Ceram. Bull. 47 (3), 292297 (1968).Google Scholar
12.Ho, I. C., J. Am. Ceram. Soc. 77 (3), 829832 (1994).CrossRefGoogle Scholar
13.Fukami, T. and Tsuchiya, H., Jpn. J. Appl. Phys. 18 (4), 735738 (1979).CrossRefGoogle Scholar
14.Yamada, A. and Chiang, Y. M., J. Am. Ceram. Soc. 78 (4), 9091014 (1995).CrossRefGoogle Scholar
15.Drofenik, M., J. Am. Ceram. Soc. 76 (1), 123128 (1993).CrossRefGoogle Scholar