Hostname: page-component-848d4c4894-xm8r8 Total loading time: 0 Render date: 2024-06-19T23:43:36.206Z Has data issue: false hasContentIssue false

Selective DNA attachment of micro- and nanoscale particles to substrates

Published online by Cambridge University Press:  31 January 2011

D. M. Hartmann*
Affiliation:
University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92037–0407
M. Heller
Affiliation:
University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92037–0407
S. C. Esener
Affiliation:
University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92037–0407
D. Schwartz
Affiliation:
Solulink Inc., 6310 Nancy Ridge Drive, San Diego, California 92121
G. Tu
Affiliation:
GenOptix, 3398 Carmel Mountain Road, San Diego, California 92121
*
a) Address all correspondence to this author. e-mail: danielmhartmann@hotmail.com
Get access

Abstract

Materials formed from micro- and nanoscale particles are of interest because they often exhibit novel optical, electrical, magnetic, chemical, or mechanical properties. In this work, a means of constructing particulate materials using DNA strands to selectively attach micro- and nanoparticles to substrates was demonstrated. Unlike previous schemes, the DNA was anchored covalently to the particles and substrates, rather than through protein intermediaries. Highly reproducible selective attachment of 0.11–0.87 mm-diameter particles was achieved, with selective:nonselective binding ratios >20:1. Calculations showed that at most 350 and 4200 DNA strands were involved in the binding of the small and large particles, respectively. Experiments showed that the DNA was bent at an angle, relative to the surfaces of their solid supports.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Takei, H., J. Vac. Sci. Technol. B 17, 1906 (1999).CrossRefGoogle Scholar
2.Heilmann, A. and Kreibig, U., Phys. J. AP 10, 193 (2000).Google Scholar
3.Park, S.H. and Xia, Y., Langmuir 15, 266 (1999).CrossRefGoogle Scholar
4.Puntes, V.F. and Krisnan, K.M., Appl. Phys. Lett. 78, 2187 (2001).CrossRefGoogle Scholar
5.Cassagneau, T., Fendler, J.H., and Mallouk, T.E., Langmuir 16, 241 (2000).CrossRefGoogle Scholar
6.Esener, S., Hartmann, D., Guncer, S., Chi, F., Heller, M., and Cable, J., in Spatial Light Modulators, Topical Meeting, edited by Burdge, G. and Esener, S.C., (OSA Trends in Optics and Photonics Series, Spatial Light Modulators 14, Incline Village, NV, 1997), p. 65.Google Scholar
7.Esener, S.C., Hartmann, D., Heller, M.J., and Cable, J.M., Heterogeneous Integration: Systems On a Chip, edited by Husain, A. and Fallahi, M., (SPIE Optical Engineering Press, Bellingham, WA, 1998) p. 113.Google Scholar
8.Ackley, D.E., Heller, M.J., and Edman, C.F., in Proc. 11th Annual Meeting. IEEE Lasers and Electro-Optics Society (IEEE, Piscataway, NJ, 1998), p. 85.Google Scholar
9.Chi, F., Shih, D.W., Hansen, M.W., Hartmann, D., D. Van Blerkom, Esener, S.C., and Heller, M., in Optoelectronic Integrated Circuits II, edited by Wang, Shin-Yuan and Park, Yoon-Soo (Proc. SPIE -The International Society for Optical Engineering 3290, San Jose, CA, 1998), p. 2.Google Scholar
10.Bashir, R., Superlattices Microstruct. 29, 1 (2001).CrossRefGoogle Scholar
11.Storhoff, J.J. and Mirkin, C.A., Chem. Rev. 99, 1849 (1999).CrossRefGoogle Scholar
12.Niemeyer, C.M., Appl. Phys. A A68, 119 (1999).CrossRefGoogle Scholar
13.Coffer, J.L., Bigham, S.R., Xin, L., Pinizzotto, R.F., Gyu, R. Young, Pirtle, R.M., and Pirtle, I.L., Appl. Phys. Lett. 69, 3851 (1996).CrossRefGoogle Scholar
14.Braun, E., Eichen, Y., Sivan, U., and Ben-Yoseph, G., Nature 391, 775 (1998).CrossRefGoogle Scholar
15.Richter, J., Seidel, R., Kirsch, R., Mertig, M., Pompe, W., Plaschke, J., and Schackert, H.K., Adv. Mater. 12, 507 (2000).3.0.CO;2-G>CrossRefGoogle Scholar
16.Mirkin, C.A., Letsinger, R.L., Mucic, R.C., and Storhoff, J.J., Nature 382, 607 (1996).CrossRefGoogle Scholar
17.Elghanian, R., Storhoff, J.J., Mucic, R.C., Letsinger, R.L., and Mirkin, C.A., Science 277, 1078 (1997).CrossRefGoogle Scholar
18.Alivisatos, A.P., Johnsson, K.P., Xiaogang, P., Wilson, T.E., Lowth, C.J., Bruchez, M.P. Jr. and Schultz, P.G., Nature 382, 609 (1996).CrossRefGoogle Scholar
19.Edelstein, R.L., Tamanaha, C.R., Sheehan, P.E., Miller, M.M., Baselt, D.R., Whitman, L.J., and Colton, R.J., Biosens. Bioelectron. 14, 805 (2000).CrossRefGoogle Scholar
20.Smith, S.B., Finzi, L., and Bustamante, C., Science 258, 1122 (1992).CrossRefGoogle Scholar
21.Fodor, S.P.A., Science 277, 393 (1997).CrossRefGoogle Scholar
22.Lipshutz, R.J., Fodor, S.P.A., Gingeras, T.R., and Lockhart, D.J., Nature Genetics 21, 20 (1999).CrossRefGoogle Scholar
23.Johnson, K.L., Kendall, K., and Roberts, A.D., Proc. R. Soc. London A 324, 301 (1971).Google Scholar