Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-27T00:50:53.629Z Has data issue: false hasContentIssue false

Selection of structural type and particle size in titanium (IV) oxide

Published online by Cambridge University Press:  03 March 2011

M. Vallet-Regí
Affiliation:
Departamento de Química Inorgánica y Bioinorgánica, Facultad de Farmacia, Universidad Complutense, 28040-Madrid, Spain and Instituto de Magnetismo Aplicado, RENFE-UCM, Apto. 155, Las Rozas 28230-Madrid, Spain
J. PeñTa
Affiliation:
Departamento de Química Inorgánica y Bioinorgánica, Facultad de Farmacia, Universidad Complutense, 28040-Madrid, Spain and Instituto de Magnetismo Aplicado, RENFE-UCM, Apto. 155, Las Rozas 28230-Madrid, Spain
A. Martínez
Affiliation:
Departamento de Química Inorgánica y Bioinorgánica, Facultad de Farmacia, Universidad Complutense, 28040-Madrid, Spain
J.M. González-Calbet
Affiliation:
Instituto de Magnetismo Aplicado, RENFE-UCM, Apto. 155, Las Rozas 28230-Madrid, Spain and Departamento de Química Inorgánica, Facultad de Ciencias, Universidad Complutense, 28040-Madrid, Spain
Get access

Abstract

Titanium (iv) oxide (amorphous, brookite, anatase, and rutile) fine particles have been synthesized by pyrolysis of an aerosol. As-received materials are constituted by hollow balloons of around 1–2 μm formed by very small crystalline nuclei, whose crystal size can be modified by annealing. By heating at 900 °C for 48 h individual crystals of around 1 μm are obtained. Intermediate sizes can be controlled as a function of the thermal treatment.

Type
Articles
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Wyckoff, R.W.G., Crystal Structures, 2nd ed. (John Wiley &Sons, New York, 1963), Vol. 1.Google Scholar
2Hyde, B. G. and Anderson, S., Inorganic Crystal Structures (John Wiley & Sons, New York, 1989).Google Scholar
3Bursill, L. A. and Hyde, B. G., Prog. Solid State Chem. 7, 177 (1972).Google Scholar
4Bailard, J. C. Jr.Emeleus, H. J., Nyholm, Sir Ronald, and Trotman-Dickenson, A. F., Comprehensive Inorganic Chemistry, 1st ed. (Pergamon Press, New York, 1973), Vol. 3, pp. 375-377.Google Scholar
5Ragai, J. and Lofti, W., Colloids and Surfaces 61, 97 (1991).CrossRefGoogle Scholar
6Howard, C. J., Sabine, T. M., and Dickson, F., Acta Crystallogr. B 47, 462 (1991).Google Scholar
7Nichimoto, S., Ohtani, B., Kajiwara, H., and Kagiya, T., J. Chem.Soc. Faraday Trans. 181, 61 (1985).Google Scholar
8Tanaka, K., Rivera, A., Hisanaga, T., and Capule, M., 61st annualmeeting of the Chemical Society of Japan I, 825 (1991).Google Scholar
9Tanaka, K., Capule, M. F., and Hisanaga, T., Chem. Phys. Lett. 187, 73 (1991).CrossRefGoogle Scholar
10Tauster, S. J., Fung, S. C., and Garten, L. R., J. Am. Chem. Soc. 100, 175 (1978).CrossRefGoogle Scholar
11Tauster, S. J., Fung, S. C., Baker, R. T. K., and Horsley, J. A., Science 211, 1121 (1981).CrossRefGoogle Scholar
12Egashira, M., Shimizu, Y., and Takao, Y., Chem. Lett. 389 (1988).CrossRefGoogle Scholar
13Shimizu, Y., Takao, Y., and Egashira, M., J. Electrom. Soc. 135, 2539 (1988).Google Scholar
14McAleer, J. F., Moseley, P. T., Norris, J. O. W, and Williams, D. E., J. Chem. Soc. Faraday Trans. 83, 1323 (1987).CrossRefGoogle Scholar
15Spitz, J. and Viguie, J. C., Brevet Francais, 70. 38371 depose le 23/10/1970.Google Scholar
16Cabanas, M. V., Gonzalez-Calbet, J. M., Labeau, M., Mollard, P., Pernet, M., and Vallet-Regf, M., J. Solid State Chem. 101, 265 (1992).CrossRefGoogle Scholar
17Vallet-Regf, M., Ragel, V., Roman, J., Martinez, J. L., Labeau, M., and Gonzalez-Calbet, J. M., J. Mater. Res. 8, 138 (1993).CrossRefGoogle Scholar
18Powder diffraction file 29-1360.Google Scholar
19Powder diffraction file 7-0007.Google Scholar
20Powder diffraction file 21-1272.Google Scholar
21Powder diffraction file 21-1276.Google Scholar