Skip to main content Accessibility help

Screen printing of stretchable electrodes for large area LED matrix

  • Xinning Ho (a1), Chek Kweng Cheng (a1), Rachel Lee Siew Tan (a1) and Jun Wei (a1)


As electronic devices are indispensable in many aspects of our lives today, their integration with unconventional surfaces is increasingly essential. Electronic devices which maintain their electrical properties upon stretching are desirable for various wearable applications. Stretchable devices demonstrated are conventionally fabricated using semiconductor processing techniques. In this study, we demonstrate stretchable electrodes, which are basic components of electrical circuits, using screen printing, a large area printing method. It provides a low cost and scalable method to fabricate large area stretchable devices. Despite the larger width and thickness of the electrodes which increases the stiffness of the material, stretchability beyond 40% is demonstrated, which is suitable for certain wearable applications. The stretchable electrodes are integrated with light emitting diodes (LEDs) to demonstrate a stretchable LED matrix. The large area LED matrices exhibit variable stretchability, depending on the LED areal coverage. This technique is expected to be applicable in the fabrication of other stretchable, large area, and more complex electronic systems.


Corresponding author

a) Address all correspondence to these authors. e-mail:


Hide All
1. Honda, W., Harada, S., Arie, T., Akita, S., and Takei, K.: Wearable, human-interactive, health-monitoring, wireless devices fabricated by macroscale printing techniques. Adv. Funct. Mater. 24, 3299 (2014).
2. Drack, M., Graz, I., Sekitani, T., Someya, T., Kaltenbrunner, M., and Bauer, S.: An imperceptible plastic electronic wrap. Adv. Mater. 27, 34 (2014).
3. Kim, D.H., Xiao, J., Song, J., Huang, Y., and Rogers, J.A.: Stretchable, curvilinear electronics based on inorganic materials. Adv. Mater. 22, 2108 (2010).
4. Zhu, Y. and Xu, F.: Buckling of aligned carbon nanotubes as stretchable conductors: A new manufacturing strategy. Adv. Mater. 24, 1073 (2012).
5. Xu, F., Wang, X., Zhu, Y., and Zhu, Y.: Wavy ribbons of carbon nanotubes for stretchable conductors. Adv. Funct. Mater. 22, 1279 (2012).
6. Kim, T., Song, H., Ha, J., Kim, S., Kim, D., Chung, S., Lee, J., and Hong, Y.: Inkjet-printed stretchable single-walled carbon nanotube electrodes with excellent mechanical properties. Appl. Phys. Lett. 104, 113103 (2014).
7. Kim, R-H., Bae, M-H., Kim, D.G., Cheng, H., Kim, B.H., Kim, D-H., Li, M., Wu, J., Du, F., Kim, H-S., Kim, S., Estrada, D., Hong, S.W., Huang, Y., Pop, E., and Rogers, J.A.: Stretchable, transparent graphene interconnects for arrays of microscale inorganic light emitting diodes on rubber substrates. Nano Lett. 11, 3881 (2011).
8. Kim, K.S., Zhao, Y., Jang, H., Lee, S.Y., Kim, J.M., Kim, K.S., Ahn, J-H., Kim, P., Choi, J-Y., and Hong, B.H.: Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457, 706 (2009).
9. Lee, P., Lee, J., Lee, H., Yeo, J., Hong, S., Nam, K.H., Lee, D., Lee, S.S., and Ko, S.H.: Highly stretchable and highly conductive metal electrode by very long metal nanowire percolation network. Adv. Mater. 24, 3326 (2012).
10. Ho, X., Tey, J., Liu, W., Cheng, C.K., and Wei, J.: Biaxially stretchable silver nanowire transparent conductors. J. Appl. Phys. 113, 044311 (2013).
11. Ho, X., Cheng, C.K., Tey, J., and Wei, J.: Biaxially stretchable transparent conductors that use nanowire networks. J. Mater. Res. 29, 2965 (2014).
12. Lipomi, D.J., Tee, B.C-K., Vosgueritchian, M., and Bao, Z.: Stretchable organic solar cells. Adv. Mater. 23, 1771 (2011).
13. Lipomi, D.J., Lee, J.A., Vosgueritchian, M., Tee, B.C-K., Bolander, J.A., and Bao, Z.: Electronic properties of transparent conductive films of PEDOT: PSS on stretchable substrates. Chem. Mater. 24, 373 (2012).
14. Lee, M-S., Lee, K., Kim, S-Y., Lee, H., Park, J., Choi, K-H., Kim, H-K., Kim, D-G., Lee, D-Y., Nam, S.W., and Park, J-U.: High-performance, transparent, and stretchable electrodes using graphene–metal nanowire hybrid structures. Nano Lett. 13, 2814 (2013).
15. Chou, N., Lee, J., and Kim, S.: Large-sized out-of-plane stretchable electrodes based on poly-dimethylsiloxane substrate. Appl. Phys. Lett. 105, 241903 (2014).
16. Gutruf, P., Walia, S., Ali, M.N., Sriram, S., and Bhaskaran, M.: Strain response of stretchable micro-electrodes: Controlling sensitivity with serpentine designs and encapsulation. Appl. Phys. Lett. 104, 021908 (2014).
17. Shi, X., Xu, R., Li, Y., Zhang, Y., Ren, Z., Gu, J., Rogers, J.A., and Huang, Y.: Mechanics design for stretchable, high areal coverage GaAs solar module on an ultrathin substrate. J. Appl. Mech. 81, 124502 (2014).
18. Kim, D-H., Liu, Z., Kim, Y-S., Wu, J., Song, J., Kim, H-S., Huang, Y., Hwang, K-c., Zhang, Y., and Rogers, J.A.: Optimized structural designs for stretchable silicon integrated circuits. Small 5, 2841 (2009).
19. Zhang, Y., Xu, S., Fu, H., Lee, J., Su, J., Hwang, K-C., Rogers, J.A., and Huang, Y.: Buckling in serpentine microstructures and applications in elastomer-supported ultra-stretchable electronics with high areal coverage. Soft Matter 9, 8062 (2013).
20. Zhang, Y., Wang, S., Li, X., Fan, J.A., Xu, S., Song, Y.M., Choi, K-J., Yeo, W-H., Lee, W., Nazaar, S.N., Lu, B., Yin, L., Hwang, K-C., Rogers, J.A., and Huang, Y.: Experimental and theoretical studies of serpentine microstructures bonded to prestrained elastomers for stretchable electronics. Adv. Funct. Mater. 24, 2028 (2014).
21. Li, T., Suo, Z., Lacour, S.P., and Wagner, S.: Compliant thin film patterns of stiff materials as platforms for stretchable electronics. J. Mater. Res. 20, 3274 (2005).
22. Lacour, S.P., Chan, D., Wagner, S., Li, T., and Suo, Z.: Mechanisms of reversible stretchability of thin metal films on elastomeric substrates. Appl. Phys. Lett. 88, 204103 (2006).
23. Lu, N., Wang, X., Suo, Z., and Vlassak, J.: Metal films on polymer substrates stretched beyond 50%. Appl. Phys. Lett. 91, 221909 (2007).
24. Robinson, A., Aziz, A., Liu, Q., Suo, Z., and Lacour, S.P.: Hybrid stretchable circuits on silicone substrate. J. Appl. Phys. 115, 143511 (2014).
25. Romeo, A., Liu, Q., Suo, Z., and Lacour, S.P.: Elastomeric substrates with embedded stiff platforms for stretchable electronics. Appl. Phys. Lett. 102, 131904 (2013).
26. Sekitani, T., Nakajima, H., Maeda, H., Fukushima, T., Aida, T., Hata, K., and Someya, T.: Stretchable active-matrix organic light-emitting diode display using printable elastic conductors. Nat. Mater. 8, 494 (2009).
27. Cheng, H., Zhang, Y., Hwang, K-C., Rogers, J.A., and Huang, Y.: Buckling of a stiff thin film on a pre-strained bi-layer substrate. Int. J. Solids Struct. 51, 3113 (2014).


Type Description Title
Supplementary materials

Ho et al. supplementary material
Supplementary figures and tables

 Word (3.0 MB)
3.0 MB


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed