Hostname: page-component-77c89778f8-swr86 Total loading time: 0 Render date: 2024-07-20T01:02:49.508Z Has data issue: false hasContentIssue false

Scanning Tunneling Microscopy and Atomic Force Microscopy Investigation of Organic Tetracyanoquinodimethane Thin Films

Published online by Cambridge University Press:  31 January 2011

H. J. Gao
Affiliation:
Department of Electronics, Peking University, Beijing 100871, China and Beijing Laboratory of Vacuum Physics, Chinese Academy of Sciences, P.O. Box 2724, Beijing 100080, China
H. X. Zhang
Affiliation:
Department of Electronics, Peking University, Beijing 100871, China and Beijing Laboratory of Vacuum Physics, Chinese Academy of Sciences, P.O. Box 2724, Beijing 100080, China
Z. Q. Xue
Affiliation:
Department of Electronics, Peking University, Beijing 100871, China and Beijing Laboratory of Vacuum Physics, Chinese Academy of Sciences, P.O. Box 2724, Beijing 100080, China
S. J. Pang*
Affiliation:
Department of Electronics, Peking University, Beijing 100871, China and Beijing Laboratory of Vacuum Physics, Chinese Academy of Sciences, P.O. Box 2724, Beijing 100080, China
*
a)Author to whom all correspondence should be addressed: Professor S. J. Pang, Beijing Laboratory of Vacuum Physics, Chinese Academy of Sciences, P.O. Box 2724, Beijing 100080, China.
Get access

Abstract

Scanning tunneling microscopy (STM) and atomic force microscopy (AFM) investigation of tetracyanoquinodimethane (TCNQ) and the related C60-TCNQ thin films is presented. Periodic molecular chains of the TCNQ on highly oriented pyrolytic graphite (HOPG) substrates were imaged, which demonstrated that the crystalline (001) plane was parallel to the substrate. For the C60-TCNQ thin films, we found that there were grains on the film surface. STM images within the grain revealed that the well-ordered rows and terraces, and the parallel rows in different grains were generally not in the same orientation. Moreover, the grain boundary was also observed. In addition, AFM was employed to modify the organic TCNQ film surface for the application of this type of materials to information recording and storage at the nanometer scale. The nanometer holes were successfully created on the TCNQ thin film by the AFM.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. See, for example, Scanning Tunnelling Microscopy and Related Methods, edited by Behm, R. J., Garcia, N., and Rohrer, H. (Kluwer Academic Publishers, London, 1990).CrossRefGoogle Scholar
2.Binning, G., Rohrer, H., Gerber, C., and Weibel, E., Phys. Rev. Lett. 49, 57 (1982).CrossRefGoogle Scholar
3.Magonov, S. N., Schuchhardt, J., Kempf, S., Keller, E., and Cantow, H-J., Synth. Met. 40, 59 (1991).CrossRefGoogle Scholar
4.Xue, Z. Q., Gao, H. J., Liu, W. M., Chu, C., Ma, Z., and Pang, S., Appl. Surf. Sci. 60/61, 346 (1992).CrossRefGoogle Scholar
5.Block, H., Adv. Polym. Sci. 33 (1979).Google Scholar
6.Acker, D. S., Harder, R. J., Mahler, W., Melby, R. J., Benson, R. E., and Mocher, W. E., J. Am. Chem. Soc. 82, 6408 (1960).CrossRefGoogle Scholar
7.Metzger, R. M. and Panetta, C. A., Proc. Int. CNRS Colloquium on Low-Dimensional Organic Conductors, Dec. 1982.Google Scholar
8.Benson, R. C., Hoffman, R. C., Potember, R. S., Bourkoff, E., and Poehler, T. O., Appl. Phys. Lett. 42, 855 (1983).CrossRefGoogle Scholar
9.Kroto, H. W., Heath, J. R., O'Brien, S. C., Curl, R. F., and Smalley, R. E., Nature 318, 162 (1985).CrossRefGoogle Scholar
10.Gao, H. J., Xue, Z. Q., Wu, Q. D., and Pang, S. J., Chin. Phys. Lett. 11, 576 (1995).Google Scholar
11.Gao, H. J., Xue, Z. Q., Wu, Q. D., and Pang, S. J., J. Vac. Sci. Technol. 13, 1242 (1995).CrossRefGoogle Scholar
12.Govers, H. A. J., Acta Crystallogr. A34, 960 (1978).CrossRefGoogle Scholar
13.Sleator, T. and Tycko, R., Phys. Rev. Lett. 60, 1418 (1988).CrossRefGoogle Scholar
14.Yang, R., Naoi, K., Evans, D., Smyrl, W., and Hendrickson, W., Langmuir 7, 556 (1991).CrossRefGoogle Scholar
15.Michel, B., Travaglim, G., Rohrer, H., Joachim, C., and Amrein, M., Z. Phys. B Condens. Matter. 76, 99 (1989).CrossRefGoogle Scholar
16. See, for example, Wragg, J., Chamberlain, J., White, H., Kratschmer, W., and Huffman, D., Nature 348, 623 (1990).CrossRefGoogle Scholar
17.Specht, M., Ohnesorge, F., and Heckl, W., Surf. Sci. Lett. 257, L653 (1991).Google Scholar
18.Garcia, R. and Garcia, N., Chem. Phys. Lett. 173, 44 (1990).CrossRefGoogle Scholar
19.Frommer, J., Angew. Chem. Int. Ed. Engl. 31, 1298 (1992).CrossRefGoogle Scholar
20.Xue, Z. Q., Gao, H. J., Liu, W. M., Wang, X., Zhao, X., Chen, H., Ma, Z., Chu, C., and Pang, S., Vac. Sci. Technol. (China) 14 (3), 179 (1994).Google Scholar