Skip to main content Accessibility help

Scandium on the formation of in situ TiB2 particulates in an aluminum matrix

  • Dan Huang (a1), David Yan (a2), Siming Ma (a1) and Xiaoming Wang (a1)


TiB2 particulates were formed in situ in an aluminum matrix via chemical reactions between an aluminum melt and the mixture of K2TiF6 and KBF4 salts. Different effects of Sc addition on the formation of the TiB2 particulates were revealed depending on the participation of Sc at different stages of the formation of the particulates. The metal–salt reactions resulted in boride layers along the α-Al grain boundaries in the presence of Sc, while the addition of Sc after the metal–salt reactions broke up the boride layers improving the dispersion of the TiB2 particulates to a limited degree. Sc promoted the growth of the TiB2 particulates, resulting in the coarsening of TiB2 particulates. The participation of Sc in the formation of TiB2 particulates altered the coarsening of the TiB2 particulates, resulting in different morphologies of the TiB2 particulates depending on the participation of Sc in the formation of the TiB2 particulates at different stages.


Corresponding author

a)Address all correspondence to this author. e-mail:


Hide All
1.Tjiong, S.C. and Ma, Z.Y.: Microstructural and mechanical characteristics of in situ metal matric composites. Mater. Sci. Eng., R 29, 49 (2000).
2.Lloyd, D.J.: Particulate reinforced aluminium and magnesium matrix composites. Int. Mater. Rev. 39, 1 (1994).
3.Prasad, S.V. and Asthana, R.: Aluminum metal-matrix composites for automotive application: Tribological considerations. Tribol. Lett. 17, 445 (2004).
4.Ibrahim, I.A. and Mohamed, F.A.: Particulate reinforced metal matrix composites—A review. J. Mater. Sci. 26, 1137 (1991).
5.Arnberg, L., Bäckerud, L., and Klang, H.: Intermetallic particulates in Al–Ti–B-type master alloys for grain refinement of aluminium. Met. Technol. 9, 7 (1982).
6.Jones, G.P. and Pearson, J.: Factors affecting the grain-refinement of aluminum using titanium and boron additives. Metall. Trans. B 7, 223 (1976).
7.Wang, X., Song, J., Vian, W., Ma, H., and Han, Q.: The interface of TiB2 and Al3Ti in molten aluminum. Metall. Mater. Trans. B 47, 3285 (2016).
8.Guzowski, M.M., Sigworth, G.K., and Sentner, D.A.: The role of boron in the grain. Metall. Trans. A 18, 603 (1987).
9.McCartney, D.G.: Grain refining of aluminium and its alloys using inoculants. Int. Mater. Rev. 34, 247 (1989).
10.Wang, X., Brydson, R., Jha, A., and Ellis, J.: Microstructural analysis of Al alloys dispersed with TiB2 particulate for MMC application. J. Microsc. 196, 137 (1999).
11.Ramesh, C.S., Pramod, S., and Keshavamurthy, R.: A study on microstructure and mechanical properties of Al6061-TiB2 in situ composites. Mater. Sci. Eng., A 528, 4152 (2011).
12.Wang, X. and Han, Q.: Relationship of diboride phases in Al–Ti(Zr)–B alloys. Mater. Sci. Technol. 31, 874 (2015).
13.Fjellstedt, J. and Jarfors, A.: On the precipitation of TiB2 in aluminum melts from the reaction with KBF4 and K2TiF6. Mater. Sci. Eng., A 413–414, 527 (2005).
14.Suresh, S., Shenbaga, N., and Moorthi, V.: Aluminium–titanium diboride (Al–TiB2) metal matrix composites: Challenges and opportunities. Procedia Eng. 38, 89 (2012).
15.Zhang, Q., Wu, G., Chen, G., Jiang, L., and Luan, B.: The thermal expansion and mechanical properties of high reinforcement content SiCp/Al composites fabricated by squeeze casting technology. Composites, Part A 34, 1023 (2003).
16.Liu, Z., Rakita, M., Xu, W., Wang, X., and Han, Q.: Ultrasound assisted salts-metal reaction for synthesizing TiB2 particulates at low temperature. Chem. Eng. J. 263, 317 (2015).
17.Mortensen, A. and Jin, I.: Solidification processing of metal matrix composites. Int. Mater. Rev. 37, 101 (1992).
18.Davies, P., Kellie, J.L.F., and Wood, J.V.: Development of cast aluminum metal matrix composites. Key Eng. Mater. 77–78, 357 (1992).
19.Kennedy, A., Karantzalis, A., and Wyatt, S.: The microstructure and mechanical properties of TiC and TiB2-reinforced cast metal matrix composites. J. Mater. Sci. 4, 933 (1999).
20.Wood, J.V., Davies, P., and Kellie, J.L.F.: Properties of reactively cast aluminium–TiB2 alloys. Mater. Sci. Technol. 9, 833 (1993).
21.Birol, Y.: An improved practice to manufacture Al–Ti–B master alloys by reacting halide salts with molten aluminium. J. Alloys Compd. 420, 71 (2006).
22.Birol, Y.: Improved halide salt process to produce Al–B master alloys. Mater. Sci. Technol. 12, 1846 (2011).
23.Wang, X.: The formation of AlB2 in an Al–B master alloy. J. Alloys Compd. 403, 283 (2005).
24.Wang, X.: Boride phase formation in the production of Al–B master alloys. J. Alloys Compd. 722, 302 (2017).
25.Wang, X., Liu, Z., Dai, W., and Han, Q.: On the understanding of aluminum grain refinement by Al–Ti–B type master alloys. Metall. Mater. Trans. B 46, 1620 (2015).
26.Moldovan, P., Butu, M., Popescu, G., Buzatu, M., Usurelu, E., Soare, V., and Mitrica, D.: Thermodynamics of interactions in Al–K2TiF6–KBF4 system. Rev. Chim. (Bucharest, Rom.) 9, 828 (2010).
27.Tjong, S.C., Wang, G.S., and Mai, Y.W.: High cycle fatigue response of in situ Al-based composites containing TiB2 and Al2O3 submicron particulates. Compos. Sci. Technol. 65, 1537 (2005).
28.Agrawal, S., Ghose, A., and Chakrabarty, I.: Effect of rotary electromagnetic stirring during solidification of in situ Al–TiB2 composites. Mater. Des. 113, 195 (2017).
29.Chen, F., Chen, Z., Mao, F., Wang, T., and Cao, Z.: TiB2 reinforced aluminum based in situ composites fabricated by stir casting. Mater. Sci. Eng., A 625, 357 (2015).
30.Herbert, M.A., Maiti, R., Mitra, R., and Chakraborty, M.: Wear behaviour of cast and mushy state rolled Al–4.5Cu alloy and in situ Al4.5Cu–5TiB2 composite. Wear 265, 1606 (2008).
31.Kumar, S., Chakraborty, M., Subramanya Sarma, V., and Murty, B.S.: Tensile and wear behaviour of in situ Al–7Si/TiB2 particulate composites. Wear 265, 134 (2008).
32.Mandal, A., Maiti, R., Chakraborty, M., and Murty, B.S.: Effect of TiB2 particulates on aging response of Al–4Cu alloy. Mater. Sci. Eng., A 386, 296 (2004).
33.Taghiabadi, R., Mahmoudi, M., Emamy Ghomy, M., and Campbell, J.: Effect of casting techniques on tensile properties of cast aluminium alloy (Al–Si–Mg) and TiB2 containing metal matrix composite. Mater. Sci. Technol. 19, 497 (2003).
34.Birol, Y.: Effect of silicon content in grain refining hypoeutectic Al–Si founday alloys with boron and titanium additions. Mater. Sci. Technol. 28, 385 (2012).
35.Spittle, J.A., Keeble, J.M., and Meshhedani, M.A.: The grain refinement of Al–Si foundry alloy. Light Met., 795 (1997).
36.Liu, X., Liu, Y., Huang, D., Han, Q., and Wang, X.: Tailoring in situ TiB2 particulates in aluminum matrix composites. Mater. Sci. Eng., A 705, 55 (2017).
37.Røyse, J. and Ryum, N.: Scandium in aluminium alloys. Int. Mater. Rev. 50, 19 (2005).
38.Pramod, S.L., Prasada Rao, A.K., Murty, B.S., and Bakshi, S.R.: Effect of Sc addition on the microstructure and wear properties of A356 alloy and A356-TiB2 in situ composite. Mater. Des. 78, 85 (2015).
39.Fjellstedt, J., Jarfors, A., and Svendsen, L.: Experimental analysis of the intermediary phase AlB2, AlB12, and TiB2 in the Al–B and Al–Ti–B systems. J. Alloys Compd. 283, 192 (1999).
40.Arnberg, L., Backerud, L., and Klang, H.: 1: Production and properties of master alloys of Al–Ti–B type and their ability to grain refine aluminum. Cosmet. Technol. 9, 1 (1982).
41.Quested, T.E.: Understanding mechanism of grain refinement of aluminium alloy by inoculation. Mater. Sci. Technol. 20, 1357 (2004).
42.Maxwell, I. and Hellawell, A.: The constitution and aolidification of peritectic alloys in the system Al–Ti. Acta Metall. Mater. 23, 895 (1975).
43.Maxwell, I. and Hellawell, A.: An analysis of the peritectic reaction with particular reference to Al–Ti alloys. Acta Metall. Mater. 23, 901 (1975).
44.Abdel-Hamid, A.A., Hamar-Thibault, S., and Hamar, R.: Crystal morphology of the compound TiB2. J. Cryst. Growth 71, 744 (1985).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed