Skip to main content Accessibility help

Room-temperature synthesis of ZnO@GO nanocomposites as anode for lithium-ion batteries

  • Yunchuan Qi (a1), Ce Zhang (a2), Shengtang Liu (a1), Yanqing Zong (a3) and Yi Men (a3)...


In this study, a facile room-temperature solution method is developed for the preparation of zinc oxide@graphene oxide (ZnO@GO) nanocomposites. Unlike the general process to obtain crystallized materials by heating, the room temperature we used can generate fine ZnO@GO nanocomposites with ultra-small ZnO nanocrystal (∼8 nm) and high weight content (∼84%). The obtained ZnO@GO nanocomposite was thoroughly characterized by various physicochemical techniques such as scanning electron microscopy, high-resolution transmission electron microscopy, X-ray diffraction, Raman spectroscopy, and X-ray photoelectron spectroscopy, indicating well-dispersed ZnO on the GO layer and strong interaction between the each other. As an anode material for lithium-ion batteries, ZnO@GO exhibits high specific reversible capacity and excellent cycling performance, which can be ascribed to the role of GO in preventing the agglomeration of the ZnO nanoparticles by creating the decorated nanoscale composite during the electrochemical process.


Corresponding author

a)Address all correspondence to these authors. e-mail:


Hide All
1.Arico, A.S., Bruce, P., Scrosati, B., Tarascon, J-M., and van Schalkwijk, W.: Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 4, 366 (2005).
2.Goriparti, S., Miele, E., De Angelis, F., Di Fabrizio, E., Proietti Zaccaria, R., and Capiglia, C.: Review on recent progress of nanostructured anode materials for Li-ion batteries. J. Power Sources 257, 421 (2014).
3.Xiang, Q., Yu, J., and Jaroniec, M.: Graphene-based semiconductor photocatalysts. Chem. Soc. Rev. 41, 782 (2012).
4.Zhang, Q., Tian, C., Wu, A., Tan, T., Sun, L., Wang, L., and Fu, H.: A facile one-pot route for the controllable growth of small sized and well-dispersed ZnO particles on GO-derived graphene. J. Mater. Chem. 22, 11778 (2012).
5.Liang, Y., Li, Y., Wang, H., Zhou, J., Wang, J., Regier, T., and Dai, H.: Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat. Mater. 10, 780 (2011).
6.Chen, Y., Zang, X., Gu, J., Zhu, S., Su, H., Zhang, D., Hu, X., Liu, Q., Zhang, W., and Liu, D.: ZnO single butterfly wing scales: Synthesis and spatial optical anisotropy. J. Mater. Chem. 21, 6140 (2011).
7.Son, D.I., Kwon, B.W., Park, D.H., Seo, W-S., Yi, Y., Angadi, B., Lee, C-L., and Choi, W.K.: Emissive ZnO–graphene quantum dots for white-light-emitting diodes. Nat. Nanotechnol. 7, 465 (2012).
8.Zhang, B., Wang, Z., Huang, B., Zhang, X., Qin, X., Li, H., Dai, Y., and Li, Y.: Anisotropic photoelectrochemical (PEC) performances of ZnO single-crystalline photoanode: Effect of internal electrostatic fields on the separation of photogenerated charge carriers during PEC water splitting. Chem. Mater. 28, 6613 (2016).
9.Wang, J., Tsuzuki, T., Tang, B., Hou, X., Sun, L., and Wang, X.: Reduced graphene oxide/ZnO composite: Reusable adsorbent for pollutant management. ACS Appl. Mater. Interfaces 4, 3084 (2012).
10.Qi, K., Cheng, B., Yu, J., and Ho, W.: Review on the improvement of the photocatalytic and antibacterial activities of ZnO. J. Alloys Compd. 727, 792 (2017).
11.Liu, X., Sun, Y., Yu, M., Yin, Y., Yang, B., Cao, W., and Ashfold, M.N.R.: Incident fluence dependent morphologies, photoluminescence and optical oxygen sensing properties of ZnO nanorods grown by pulsed laser deposition. J. Mater. Chem. C 3, 2557 (2015).
12.Sin Tee, T., Chun Hui, T., Wu Yi, C., Chi Chin, Y., Umar, A.A., Riski Titian, G., Hock Beng, L., Kok Sing, L., Yahaya, M., and Salleh, M.M.: Microwave-assisted hydrolysis preparation of highly crystalline ZnO nanorod array for room temperature photoluminescence-based CO gas sensor. Sens. Actuators, B 227, 304 (2016).
13.Huang, X.H., Xia, X.H., Yuan, Y.F., and Zhou, F.: Porous ZnO nanosheets grown on copper substrates as anodes for lithium ion batteries. Electrochim. Acta 56, 4960 (2011).
14.Ahmad, M., Yingying, S., Nisar, A., Sun, H., Shen, W., Wei, M., and Zhu, J.: Synthesis of hierarchical flower-like ZnO nanostructures and their functionalization by Au nanoparticles for improved photocatalytic and high performance Li-ion battery anodes. J. Mater. Chem. 21, 7723 (2011).
15.Hong, R., Pan, T., Qian, J., and Li, H.: Synthesis and surface modification of ZnO nanoparticles. Chem. Eng. J. 119, 71 (2006).
16.Ong, C.B., Ng, L.Y., and Mohammad, A.W.: A review of ZnO nanoparticles as solar photocatalysts: Synthesis, mechanisms and applications. Renew. Sustain. Energy Rev. 81, 536 (2018).
17.Eigler, S. and Hirsch, A.: Chemistry with graphene and graphene oxide—Challenges for synthetic chemists. Angew. Chem., Int. Ed. 53, 7720 (2014).
18.Dreyer, D.R., Park, S., Bielawski, C.W., and Ruoff, R.S.: The chemistry of graphene oxide. Chem. Soc. Rev. 39, 228 (2010).
19.Williams, G. and Kamat, P.V.: Graphene–semiconductor nanocomposites: Excited-state interactions between ZnO nanoparticles and graphene oxide. Langmuir 25, 13869 (2009).
20.Akhavan, O.: Graphene nanomesh by ZnO nanorod photocatalysts. ACS Nano 4, 4174 (2010).
21.Luo, Q-P., Yu, X-Y., Lei, B-X., Chen, H-Y., Kuang, D-B., and Su, C-Y.: Reduced graphene oxide-hierarchical ZnO hollow sphere composites with enhanced photocurrent and photocatalytic activity. J. Mater. Chem. C 116, 8111 (2012).
22.Chen, Y-L., Hu, Z-A., Chang, Y-Q., Wang, H-W., Zhang, Z-Y., Yang, Y-Y., and Wu, H-Y.: Zinc oxide/reduced graphene oxide composites and electrochemical capacitance enhanced by homogeneous incorporation of reduced graphene oxide sheets in zinc oxide matrix. J. Mater. Chem. C 115, 2563 (2011).
23.Li, S., Xiao, Y., Wang, X., and Cao, M.: A ZnO–graphene hybrid with remarkably enhanced lithium storage capability. Phys. Chem. Chem. Phys. 16, 25846 (2014).
24.Ren, H., Sun, J., Yu, R., Yang, M., Gu, L., Liu, P., Zhao, H., Kisailus, D., and Wang, D.: Controllable synthesis of mesostructures from TiO2 hollow to porous nanospheres with superior rate performance for lithium ion batteries. Chem. Sci. 7, 793 (2016).
25.Kim, C., Kim, J.W., Kim, H., Kim, D.H., Choi, C., Jung, Y.S., and Park, J.: Graphene oxide assisted synthesis of self-assembled zinc oxide for lithium-ion battery anode. Chem. Mater. 28, 8498 (2016).
26.Huang, Q., Zeng, D., Li, H., and Xie, C.: Room temperature formaldehyde sensors with enhanced performance, fast response and recovery based on zinc oxide quantum dots/graphene nanocomposites. Nanoscale 4, 5651 (2012).
27.Dong, X., Cao, Y., Wang, J., Chan-Park, M.B., Wang, L., Huang, W., and Chen, P.: Hybrid structure of zinc oxide nanorods and three dimensional graphene foam for supercapacitor and electrochemical sensor applications. RSC Adv. 2, 4364 (2012).
28.Chen, Y-C., Katsumata, K-i., Chiu, Y-H., Okada, K., Matsushita, N., and Hsu, Y-J.: ZnO–graphene composites as practical photocatalysts for gaseous acetaldehyde degradation and electrolytic water oxidation. Appl. Catal., A 490, 1 (2015).
29.Chang, H., Sun, Z., Ho, K.Y-F., Tao, X., Yan, F., Kwok, W-M., and Zheng, Z.: A highly sensitive ultraviolet sensor based on a facile in situ solution-grown ZnO nanorod/graphene heterostructure. Nanoscale 3, 258 (2011).
30.Zhang, Y., Li, H., Pan, L., Lu, T., and Sun, Z.: Capacitive behavior of graphene–ZnO composite film for supercapacitors. J. Electroanal. Chem. 634, 68 (2009).
31.Liu, B. and Zeng, H.C.: Room temperature solution synthesis of monodispersed single-crystalline ZnO nanorods and derived hierarchical nanostructures. Langmuir 20, 4196 (2004).
32.Cao, H.L., Qian, X.F., Gong, Q., Du, W.M., Ma, X.D., and Zhu, Z.K.: Shape- and size-controlled synthesis of nanometre ZnO from a simple solution route at room temperature. Nanotechnology 17, 3632 (2006).
33.Andriamiadamanana, C., Laberty-Robert, C., Sougrati, M.T., Casale, S., Davoisne, C., Patra, S., and Sauvage, F.: Room-temperature synthesis of iron-doped anatase TiO2 for lithium-ion batteries and photocatalysis. Inorg. Chem. 53, 10129 (2014).
34.Oliveira, A.P.A., Hochepied, J-F., Grillon, F., and Berger, M-H.: Controlled precipitation of zinc oxide particles at room temperature. Chem. Mater. 15, 3202 (2003).
35.Hummers, W.S. and Offeman, R.E.: Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339 (1958).
36.Machado, B.F. and Serp, P.: Graphene-based materials for catalysis. Catal. Sci. Technol. 2, 54 (2012).
37.Ferrari, A.C., Meyer, J.C., Scardaci, V., Casiraghi, C., Lazzeri, M., Mauri, F., Piscanec, S., Jiang, D., Novoselov, K.S., Roth, S., and Geim, A.K.: Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401 (2006).
38.Herring, N.P., Almahoudi, S.H., Olson, C.R., and El-Shall, M.S.: Enhanced photocatalytic activity of ZnO–graphene nanocomposites prepared by microwave synthesis. J. Nanopart. Res. 14, 1277 (2012).
39.Atchudan, R., Edison, T.N.J.I., Perumal, S., Karthikeyan, D., and Lee, Y.R.: Facile synthesis of zinc oxide nanoparticles decorated graphene oxide composite via simple solvothermal route and their photocatalytic activity on methylene blue degradation. J. Photochem. Photobiol., B 162, 500 (2016).
40.Feng, Y., Zhang, Y., Song, X., Wei, Y., and Battaglia, V.S.: Facile hydrothermal fabrication of ZnO–graphene hybrid anode materials with excellent lithium storage properties. Sustainable Energy Fuels 1, 767 (2017).
41.Ahmad, M., Ahmed, E., Hong, Z.L., Xu, J.F., Khalid, N.R., Elhissi, A., and Ahmed, W.: A facile one-step approach to synthesizing ZnO/graphene composites for enhanced degradation of methylene blue under visible light. Appl. Surf. Sci. 274, 273 (2013).
42.Bu, Y., Chen, Z., Li, W., and Hou, B.: Highly efficient photocatalytic performance of graphene–ZnO quasi-shell–core composite material. ACS Appl. Mater. Interfaces 5, 12361 (2013).
43.Guo, R., Yue, W., An, Y., Ren, Y., and Yan, X.: Graphene-encapsulated porous carbon–ZnO composites as high-performance anode materials for Li-ion batteries. Electrochim. Acta 135, 161 (2014).
44.Ren, C., Yang, B., Wu, M., Xu, J., Fu, Z., Lv, Y., Guo, T., Zhao, Y., and Zhu, C.: Synthesis of Ag/ZnO nanorods array with enhanced photocatalytic performance. J. Hazard. Mater. 182, 123 (2010).
45.Li, N., Jin, S.X., Liao, Q.Y., and Wang, C.X.: ZnO anchored on vertically aligned graphene: Binder-free anode materials for lithium-ion batteries. ACS Appl. Mater. Interfaces 6, 20590 (2014).
46.Chae, O.B., Park, S., Ryu, J.H., and Oh, S.M.: Performance improvement of nano-sized zinc oxide electrode by embedding in carbon matrix for lithium-ion batteries. J. Electrochem. Soc. 160, A11 (2013).
47.Kushima, A., Liu, X.H., Zhu, G., Wang, Z.L., Huang, J.Y., and Li, J.: Leapfrog cracking and nanoamorphization of ZnO nanowires during in situ electrochemical lithiation. Nano Lett. 11, 4535 (2011).
48.Ender, M., Illig, J., and Ivers-Tiffée, E.: Three-electrode setups for lithium-ion batteries: I. Fem-simulation of different reference electrode designs and their implications for half-cell impedance spectra. J. Electrochem. Soc. 164, A71 (2017).
49.Costard, J., Ender, M., Weiss, M., and Ivers-Tiffée, E.: Three-electrode setups for lithium-ion batteries: II. Experimental study of different reference electrode designs and their implications for half-cell impedance spectra. J. Electrochem. Soc. 164, A80 (2017).


Related content

Powered by UNSILO
Type Description Title
Supplementary materials

Qi et al. supplementary material
Figures S1-S4

 Word (1.5 MB)
1.5 MB

Room-temperature synthesis of ZnO@GO nanocomposites as anode for lithium-ion batteries

  • Yunchuan Qi (a1), Ce Zhang (a2), Shengtang Liu (a1), Yanqing Zong (a3) and Yi Men (a3)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.