Hostname: page-component-7479d7b7d-pfhbr Total loading time: 0 Render date: 2024-07-13T17:22:20.204Z Has data issue: false hasContentIssue false

Role of Ni and Zr doping on the electrical, optical, magnetic, and structural properties of barium zinc tantalate ceramics

Published online by Cambridge University Press:  31 January 2011

G. Rong
Affiliation:
Electrical and Computer Engineering Department, Northwestern University, Evanston, Illinois 60208
N. Newman
Affiliation:
Electrical and Computer Engineering Department, Northwestern University, Evanston, Illinois 60208
B. Shaw
Affiliation:
Electrical and Computer Engineering Department, Northwestern University, Evanston, Illinois 60208
D. Cronin
Affiliation:
Trans-Tech Inc., Adamstown, MD 21710
Get access

Abstract

Properties of Ni- and Zr-doped Ba(Zn1/3Ta2/3)O3 ceramics are reported. The nickel ion has an effective paramagnetic moment of 3.22 ± 0.05. Optical spectra of Ni-doped Ba(Zn1/3Ta2/3)O3 are dominated by discrete internal transitions between Ni2+ 3d orbitals. Absorption from the 3Γ2(F) ground state to 4Γ3(F), 3Γ1(D), 5Γ1(D), 4Γ3(P) excited states occurs at approximately 1.55, 1.75, 2.50, and 2.80 eV, respectively. The ligand field strength of neighboring oxygen ions ranges from about 7300 cm−1 (0.25% Ni) to about 7700 cm−1 (1.0% Ni). A significant increase in the visible continuum background is correlated with increased tan δ. This effect is attributed to point defects in the Ni environment, suggesting that point defects play an important role in microwave loss in practical dielectric material.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Ceramic Transactions: Materials and Processes for Wireless Communication, edited by Negas, T. and Ling, H. (American Ceramic Society Publications, Westerville, OH, 1995), Vol. 53.Google Scholar
2.Negas, T., Yeager, G., Bell, S., and Amren, R., in Chemistry of Electronic Ceramic Materials, Proceedings of the International Conference, Jackson, WY, July 17–20, 1990 (National Institute of Standards and Technology Special Publications, Gaithersburg, MD, 804, 1991), p. 21.Google Scholar
3.Desu, S.B. and O'Bryan, H.M., J. Am. Ceram. Soc. 68, 546 (1985).Google Scholar
4.Kawashima, S., Nishida, M., Ueda, I., and Ouchi, H., J. Am. Ceram. Soc. 66, 421 (1983).Google Scholar
5.Tamura, H., Konoike, T., Sakabe, Y., and Wakino, K., J. Am. Ceram. Soc. 67, C59 (1984).Google Scholar
6.Tamura, H., Sagala, D.A., and Wakino, K., Jpn. J. Appl. Phys. 25, 787 (1986).Google Scholar
7.Higuchi, Y., Michiura, N., Tatekawa, T., and Tamura, H., in Ceramic Transactions: Materials and Processes for Wireless Communication, edited by Negas, T. and Ling, H. (American Ceramic Society, Westerville, OH, 1995), Vol. 53.Google Scholar
8.Tamura, H., Am. Ceram. Soc. Bull. 73, 93 (1994).Google Scholar
9.Negas, T., Yeager, G., Bell, S., Coats, N., Minis, I., Am. Ceram. Soc. Bull. 72, 80 (1993).Google Scholar
10.Wakino, K., Minai, K., and Tamura, H., J. Am. Ceram. Soc. 67, 278 (1984).Google Scholar
11.Schlomann, E., Phys. Rev. 135, A413 (1964).Google Scholar
12.Christoffersen, R., Davies, P.K., Wei, X., and Negas, T., J. Am. Ceram. Soc. 77, 1441 (1994).Google Scholar
13.Sagala, D. A. and Nambu, S., J. Am. Ceram. Soc. 75, 2573 (1992).CrossRefGoogle Scholar
14.Gurevich, V.L., Kinetics of Phonon Systems (Nauka, Moscow, 1980).Google Scholar
15.Subbaswamy, K.R. and Mills, D.L., Phys. Rev. B. 33, 4213 (1986).CrossRefGoogle Scholar
16.Zurmuhlen, R., Colla, E., Dube, D.C., Petzelt, J., Reaney, I., Bell, A., and Setter, N., J. Appl. Phys. 76, 5864 (1994).Google Scholar
17.Wakino, K., Murata, M., and Tamura, H., J. Am. Ceram. Soc. 69, 34 (1986).Google Scholar
18.Earnshaw, A., Introduction to Magnetochemistry (Academic Press, New York, 1968).Google Scholar
19.Abragam, A. and Bleaney, B., Electron Paramagnetic Resonance of Transition Ions (Oxford University Press, New York, 1970).Google Scholar
20.Low, W., Phys. Rev. 109, 247 (1958).Google Scholar
21.Kortum, G., Reflectance Spectroscopy (Springer Verlag, New York, 1969).Google Scholar
22.Melamed, N.T., J. Appl. Phys. 34, 560 (1963).Google Scholar
23.Asmussen, R. and Bostrup, O., Acta Chem. Scand. 11, 745 (1957);Google Scholar
Jorgensen, C.K., Acta Chem. Scand. 17, 1034 (1963);Google Scholar
Jorgensen, C.K., Mol. Phys. 4, 231 (1961);Google Scholar
Baldwin, M.E., Spectrochim Acta 19, 315 (1963).CrossRefGoogle Scholar
24.Newman, R. and Chrenko, R.M., Phys. Rev. 114, 1507 (1959).CrossRefGoogle Scholar
25.Morin, F.J., Phys. Rev. 93, 1199 (1954).CrossRefGoogle Scholar
26.Tippins, H.H., Phys. Rev. B 1, 126 (1970).Google Scholar
27.Schlapp, R. and Penney, W.G., Phys. Rev. 42, 666 (1932).Google Scholar
28.Orgel, L.E., J. Chem. Phys. 23, 1004 (1955).CrossRefGoogle Scholar
29.Jorgensen, C.K., Acta Chem. Scand. 9, 1362 (1955).Google Scholar
30.Morin, F.J., Bell Sys. Tech. J. July, 1047 (1958).Google Scholar
31.Jacobson, A.J., Collins, B.M., and Fender, B.E.F, Acta Crystallogr., Sect. B 32, 1083 (1976).CrossRefGoogle Scholar
32.Davies, P., in Ceramic Transactions: Materials and Processes for Wireless Communication, edited by Negas, T. and Ling, H. (American Ceramic Society Publications, Westerville, OH, 1995), Vol. 53, p. 137.Google Scholar
33.Braginsky, V.B., Mitrofanov, V.P., and Panov, V.I., Systems with Small Dissipation (University of Chicago Press, Chicago, IL, 1985).Google Scholar