Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-06-26T09:53:51.807Z Has data issue: false hasContentIssue false

Role of excess PbO on the microstructure and dielectric properties of lead magnesium niobate

Published online by Cambridge University Press:  03 March 2011

S.M. Gupta
Affiliation:
Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology, Bombay, 400 076 India
A.R. Kulkarni
Affiliation:
Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology, Bombay, 400 076 India
Get access

Abstract

Stoichiometric and 2 wt. % excess lead oxide containing lead magnesium niobate (PMN) ceramics have been prepared by partial oxalate route. Dielectric measurements with frequency showed a typical relaxor behavior for stoichiometric PMN, while PMN with excess PbO shows a scatter in the dielectric curves at all temperatures above Tc. Under the same processing conditions, the dielectric constant (Kmax) decreases drastically from 16,300 to 9500 at 1 KHz for PMN without and with excess PbO, respectively. Microstructure studies revealed a second phase (unreacted PbO) segregated in the grain boundaries for excess PbO samples. A careful analysis of the data on dielectric properties and phases present coupled with microstructural detail indicate that the second phase in the grain boundary has a pronounced effect on the dielectric properties and not the pyrochlore phase.

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Swartz, S. L. and Shrout, T. R., Mater. Res. Bull. XVII, 12451250 (1982).CrossRefGoogle Scholar
2Lejeune, M. and Boilot, J. P., Am. Ceram. Soc. Bull. 64 (4), 679682 (1984).Google Scholar
3Lejeune, M. and Boilot, J. P., Mater. Res. Bull. XX, 493499 (1985).CrossRefGoogle Scholar
4Guha, J. P. and Anderson, H. U., J. Am. Ceram. Soc. 69 (11), C-287C-288 (1986).Google Scholar
5Chaput, F., Boilot, J. P., Lejeune, M., Papiernik, R., and Pfaizgrag, L. G., J. Am. Ceram. Soc. 72 (8), 13551357 (1989).CrossRefGoogle Scholar
6Katayama, K., Abe, M., and Akiba, T., Ceram. Int. 15, 289295 (1989).CrossRefGoogle Scholar
7Choy, J. H., Yoo, J. S., Rang, S. Gu., Hong, S. T., and Kim, D. G., Mater. Res. Bull. XXV, 283291 (1990).CrossRefGoogle Scholar
8Shrout, T. R., Papet, P., Kim, S., and Lee, G-S., J. Am. Ceram. Soc. 73 (7), 18621867 (1990).CrossRefGoogle Scholar
9Watanabe, A., Haneda, H., Mosiyoshi, Y., Shirasaki, S., Kuramoto, S., and Yamamura, A., J. Mater. Sci. 27, 12451249 (1992).CrossRefGoogle Scholar
10Gupta, S. M. and Kulkarni, A. R., Mater. Res. Bull. XVIII (12), 12951301 (1993).CrossRefGoogle Scholar
11Yanagisawa, K., J. Mater. Sci. Lett. 12, 18421843 (1993).CrossRefGoogle Scholar
12Swartz, S. L. and Shrout, T. R., Ferroelectrics 41, 117132 (1982).Google Scholar
13Gupta, S. M. and Kulkarni, A. R., unpublished.Google Scholar
14Kang, D. H. and Yoon, K. H., Ferroelectrics 87, 255264 (1988).CrossRefGoogle Scholar
15Swartz, S. L., Shrout, T. R., Schulze, W. A., and Cross, L. E., J. Am. Ceram. Soc. 67 (5), 311315 (1984).CrossRefGoogle Scholar
16ASTM Std., 1989 Annual Book of ASTM Standards, Vol. 15.02, C373-88 (ASTM, Philadelphia, PA), 19103–118, pp. 109110.Google Scholar
17Chen, J., Gorton, A., Chen, H. M., and Harmer, M. P., J. Am. Ceram. Soc. 69 (12), C-303C-305 (1986).Google Scholar
18Wang, H. C. and Schulze, W. A., J. Am. Ceram. Soc. 73, 825832 (1990).CrossRefGoogle Scholar
19Guha, J. P., Hong, D. H., and Anderson, H. U., J. Am. Ceram. Soc. 71, C-152C-154 (1988).Google Scholar