Skip to main content Accessibility help
×
Home

The role of alternating current electric field for cell adhesion on 2D and 3D biomimetic scaffolds based on polymer materials and adhesive proteins

  • V. Pehlivanova (a1), V. Krasteva (a1), B. Seifert (a2), K. Lützow (a2), I. Tsoneva (a3), T. Becker (a4), K. Richau (a4), A. Lendlein (a4) and R. Tzoneva (a5)...

Abstract

Tissue engineering principles suggest the formation of 3D scaffolds based on polymer fibers and adhesive proteins. These scaffolds aim to mimic the native extracellular matrix and thus providing a favorable environment for cell attachment and proliferation. The application of an electric field (EF) can influence the quantity and the spatial orientation/conformation of adsorbed proteins, which could lead to changes in their functions. We study the influence of alternating current (AC) EF on the adsorption of fibronectin onto poly(etherimide) (PEI) electrospun fiber materials in 3D structures and subsequent cell adhesion. The results are compared with 2D PEI material and glass surface. 3D scaffolds adsorbed a lower amount of fibronectin than 2D film or glass. Application of AC EF with a frequency of 1 Hz decreased the adsorption of fibronectin. Cell adhesion on 3D materials was reduced compared with 2D film and glass. The application of EF with frequencies between 1 and 10 Hz improved cell adhesion on both 2D and 3D materials.

Copyright

Corresponding author

a)Address all correspondence to this author. e-mail: tzoneva@bio21.bas.bg

References

Hide All
1.Shastri, V.P. and Lendlein, A.: Materials in regenerative medicine. Adv. Mater. 21(32–33), 3231 (2009).
2.Jung, F., Wischke, C., and Lendlein, A.: Degradable, multifunctional cardiovascular implants: Challenges and hurdles. MRS Bull. 35(8), 607 (2010).
3.Shastri, V.P. and Lendlein, A.: Engineering materials for regenerative medicine. MRS Bull. 35(8), 571 (2010).
4.Ma, P.X. and Langer, R.: Fabrication of biodegradable polymer foams for cell transplantation and tissue engineering. Methods Mol. Med. 18, 47 (1999).
5.Sundararaghavan, H.G. and Burdick, J.A.: Gradients with depth in electrospun fibrous scaffolds for directed cell behavior. Biomacromolecules 12(6), 2344 (2011).
6.Kawakami, H., Mori, Y., Takagi, J., Nagaoka, S., Kanamori, T., Shinbo, T., and Kubota, S.: Development of a novel polyimide hollow fiber for an intravascular oxygenator. ASAIO J. 43, M490 (1997).
7.Stieglitz, T. and Meyer, J.U.: Implantable microsystems. Polyimidebased neuroprotheses for interfacing nerves. Med. Devices Technol. 10(6), 28 (1999).
8.Lützow, K., Albrecht, W., Weigel, T., Seifert, B., Groth, T., and Lendlein, A.: Development of novel polyetherimide particles for the adsorption of proteins from plasma. Int. J. Artif. Organs 28(5), 537 (2005).
9.Albrecht, W., Santoso, F., Lutzow, K., Weigel, T., Schomacker, R., and Lendlein, A.: Preparation of aminated microfiltration membranes by degradable functionalization using plain PEI membranes with various morphologies. J. Membr. Sci. 292(1–2), 145 (2007).
10.Seifert, B., Mihanetzis, G., Groth, T., Albrecht, W., Richau, K., Missirlis, Y., Paul, D., and von Sengbusch, G.: Polyetherimide: A new membrane-forming polymer for biomedical applications. Artif. Organs 26(2), 189 (2002).
11.Lange, M., Luetzow, K., Neffe, A.T., and Lendlein, A.: Synthesis and characterization of Polyetherimides with 3-methoxy-1,2-propanediol moieties. Macromol. Symp. 309310, 40 (2011).
12.Hiebl, B., Lutzow, K., Lange, M., Jung, F., Seifert, B., Klein, F., Weigel, T., Kratz, K., and Lendlein, A.: Cytocompatibility testing of cell culture modules fabricated from specific candidate biomaterials using injection molding. J. Biotechnol. 148(1), 76 (2010).
13.Rueder, C., Sauter, T., Becker, T., Kratz, K., Hiebl, B., Jung, F., Lendlein, A., and Zohlnhoefer, D.: Viability, proliferation and adhesion of smooth muscle cells and human umbilical vein endothelial cells on electrospun polymer scaffolds. Clin. Hemorheol. Microcirc. 50(1–2), 101 (2012).
14.Schneider, T., Kohl, B., Sauter, T., Becker, T., Kratz, K., Schossig, M., Jung, F., Lendlein, A., Ertel, W., and Schulze-Tanzil, G.: Interaction of chondrocytes with electrospun polymer scaffolds depending on the fiber orientation. Int. J. Artif. Organs 34(8), 688 (2011).
15.Braune, S., Lange, M., Richau, K., Luetzow, K., Weigel, T., Jung, F., and Lendlein, A.: Interaction of thrombocytes with poly(ether imide): The influence of processing. Clin. Hemorheol. Microcirc. 46(2–3), 239 (2010).
16.Tzoneva, R., Seifert, B., Albrecht, W., Richau, K., Lendlein, A., and Groth, T.: Poly(ether imide) membranes: Studies on the effect of surface modification and protein pre-adsorption on endothelial cell adhesion, growth and function. J. Biomater. Sci., Polym. Ed. 19(7), 837 (2008).
17.Tzoneva, R., Seifert, B., Albrecht, W., Richau, K., Groth, T., and Lendlein, A.: Hemocompatibility of poly(ether imide) membranes functionalized with carboxylic groups. J. Mater. Sci. - Mater. Med. 19(10), 3203 (2008).
18.Reneker, D.H. and Chun, I.: Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology 7(3), 216 (1996).
19.Zhu, Y., Chian, K.S., Chan-Park, M.B., Mhaisalkar, P.S., and Ratner, B.D.: Protein bonding on biodegradable poly(L-lactide-co-caprolactone) membrane for esophageal tissue engineering. Biomaterials 27(1), 68 (2006).
20.Taguchi, T., Kishida, A., Akashi, M., and Maruyama, I.: Immobilization of human vascular endothelial growth factor (VEGF165) onto biomaterials: An evaluation of the biological activity of immobilized VEGF165. J. Bioact. Compat. Polym. 15(4), 309 (2000).
21.Dubiel, E.A., Martin, Y., and Vermette, P.: Bridging the gap between physicochemistry and interpretation prevalent in cell-surface interactions. Chem. Rev. 111(4), 2900 (2011).
22.Cukierman, E., Pankov, R., Stevens, D.R., and Yamada, K.M.: Taking cell-matrix adhesions to the third dimension. Science 294(5547), 1708 (2001).
23.Grinnell, F.: Fibroblast biology in three-dimensional collagen matrices. Trends Cell Biol. 13(5), 264 (2003).
24.Georges, P.C. and Janmey, P.A.: Cell type-specific response to growth on soft materials. J. Appl. Physiol. 98(4), 1547 (2005).
25.Morrow, R., McKenzie, D.R., Bilek, M.M.M., MacDonald, C.L., Stindt, M., Anetsberger, G., and Martin, A.S.: Electric field effects on adsorption/desorption of proteins and colloidal particles on a gold film observed using surface plasmon resonance. Physica B 394(2), 203 (2007).
26.Song, Y.Y., Li, Y., Yang, C., and Xia, X.H.: Surface electric field manipulation of the adsorption kinetics and biocatalytic properties of cytochrome c on a 3D macroporous Au electrode. Anal. Bioanal. Chem. 390(1), 333 (2008).
27.Cho, M.R., Thatte, H.S., Lee, R.C., and Golan, D.E.: Induced redistribution of cell-surface receptors by alternating-current electric-fields. FASEB J. 8(10), 771 (1994).
28.Cho, M.R., Thatte, H.S., Lee, R.C., and Golan, D.E.: Reorganization of microfilament structure induced by ac electric fields. FASEB J. 10(13), 1552 (1996).
29.Stossel, T.P.: On the crawling of animal cells. Science 260, 1086 (1993).
30.Krasteva, V., Pehlivanova, V., Seifert, B., Luetzow, K., Tsoneva, I., Richau, K., Lendlein, A., and Tzoneva, R.: Influence of AC electric fields on the adsorption of plasma proteins onto nanofiber biomaterials. Compt. rend. Acad. bulg. Sci. 64(4), 535 (2011).
31.Quantifying Western Blots Without Expensive Commercial Quantification Software: http://www.lukemiller.org/journal/2007/08/quantifying-western-blots-without.html , Internet (2011).
32.Soliman, S., Sant, S., Nichol, J.W., Khabiry, M., Traversa, E., and Khademhosseini, A.: Controlling the porosity of fibrous scaffolds by modulating the fiber diameter and packing density. J. Biomed. Mater. Res. Part A 96(3), 566 (2011).
33.Balguid, A., Mol, A., van Marion, M.H., Bank, R.A., Bouten, C.V., and Baaijens, F.P.: Tailoring fiber diameter in electrospun poly(epsilon-caprolactone) scaffolds for optimal cellular infiltration in cardiovascular tissue engineering. Tissue Eng. Part A 15(2), 437 (2009).
34.Sell, S., Barnes, C., Simpson, D., and Bowlin, G.: Scaffold permeability as a means to determine fiber diameter and pore size of electrospun fibrinogen. J. Biomed. Mater. Res. Part A 85(1), 115 (2008).
35.Kim, G. and Kim, W.: Highly porous 3D nanofiber scaffold using an electrospinning technique. J. Biomed. Mater. Res. Part B 81(1), 104 (2007).
36.Cho, M.R., Thatte, H.S., Lee, R.C., and Golan, D.E.: Integrin-dependent human macrophage migration induced by oscillatory electrical stimulation. Ann. Biomed. Eng. 28(3), 234, (2000).
37.Bretscher, A.: Microfilaments and membranes. Curr. Opin. Cell Biol. 5, 653 (1993).

Keywords

Related content

Powered by UNSILO

The role of alternating current electric field for cell adhesion on 2D and 3D biomimetic scaffolds based on polymer materials and adhesive proteins

  • V. Pehlivanova (a1), V. Krasteva (a1), B. Seifert (a2), K. Lützow (a2), I. Tsoneva (a3), T. Becker (a4), K. Richau (a4), A. Lendlein (a4) and R. Tzoneva (a5)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.