Skip to main content Accessibility help
×
Home

Robust quantum-based interatomic potentials for multiscale modeling in transition metals

  • John A. Moriarty (a1), Lorin X. Benedict (a1), James N. Glosli (a1), Randolph Q. Hood (a1), Daniel A. Orlikowski (a1), Mehul V. Patel (a1), Per Söderlind (a1), Frederick H. Streitz (a1), Meijie Tang (a1) and Lin H. Yang (a1)...

Abstract

First-principles generalized pseudopotential theory (GPT) provides a fundamental basis for transferable multi-ion interatomic potentials in transition metals and alloys within density-functional quantum mechanics. In the central body-centered cubic (bcc) metals, where multi-ion angular forces are important to materials properties, simplified model GPT (MGPT) potentials have been developed based on canonical d bands to allow analytic forms and large-scale atomistic simulations. Robust, advanced-generation MGPT potentials have now been obtained for Ta and Mo and successfully applied to a wide range of structural, thermodynamic, defect, and mechanical properties at both ambient and extreme conditions. Selected applications to multiscale modeling discussed here include dislocation core structure and mobility, atomistically informed dislocation dynamics simulations of plasticity, and thermoelasticity and high-pressure strength modeling. Recent algorithm improvements have provided a more general matrix representation of MGPT beyond canonical bands, allowing improved accuracy and extension to f-electron actinide metals, an order of magnitude increase in computational speed for dynamic simulations, and the development of temperature-dependent potentials.

Copyright

Corresponding author

a) Address all correspondence to this author. e-mail: moriarty2@llnl.gov This paper was selected as the Outstanding Meeting Paper for the 2005 MRS Spring Meeting Symposium EE Proceedings, Vol. 882E.

References

Hide All
1.Moriarty, J.A., Vitek, V., Bulatov, V.V., Yip, S.: Atomistic simulations of dislocations and defects. J. Computer-Aided Mater. Design 9, 99 (2002).
2.Hohenberg, P., Kohn, W.: Inhomogeneous electron gas. Phys. Rev. 136, B864 (1964).
3.Kohn, W., Sham, L.J.: Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133 (1965).
4.Moriarty, J.A.: Density-functional formulation of the generalized pseudopotential theory. Phys. Rev. B 16, 2537 (1977).
5.Moriarty, J.A.: Density-functional formulation of the generalized pseudopotential theory. II. Phys. Rev. B 26, 1754 (1982).
6.Moriarty, J.A.: Density-functional formulation of the generalized pseudopotential theory. III. Transition-metal interatomic potentials. Phys. Rev. B 38, 3199 (1988).
7.Moriarty, J.A.: Analytic representation of multi-ion interatomic potentials in transition metals. Phys. Rev. B 42, 1609 (1990).
8.Moriarty, J.A.: Angular forces and melting in bcc transition metals: A case study of molybdenum. Phys. Rev. B 49, 12431 (1994).
9.Moriarty, J.A., Widom, M.: First-principles interatomic potentials for transition-metal aluminides: Theory and trends across the 3d series. Phys. Rev. B 56, 7905 (1997).
10.Moriarty, J.A., Belak, J.F., Rudd, R.E., Söderlind, P., Streitz, F.H., Yang, L.H.: Quantum-based atomistic simulation of materials properties in transition metals. J. Phys.: Condens. Matter 14, 2825 (2002).
11.Moriarty, J.A., Phillips, R.: First-principles interatomic potentials for transition-metal surfaces. Phys. Rev. Lett. 66, 3036 (1991).
12.Yang, L.H., Söderlind, P., Moriarty, J.A.: Accurate atomistic simulation of a/2〈111〉 screw dislocations and other defects in bcc tantalum. Philos. Mag. A 81, 1355 (2001).
13.Moriarty, J.A. (unpublished).
14.Yang, L.H., Söderlind, P., Moriarty, J.A.: Atomistic simulation of pressure-dependent screw dislocation properties in bcc tantalum. Mater. Sci. Eng. A 309–310, 102 (2001).
15.Yang, L.H., Moriarty, J.A.: Kink-pair mechanisms for a/2〈111〉 screw dislocation motion in bcc tantalum. Mater. Sci. Eng. A 319–321, 124 (2001).
16.Yang, L.H., Söderlind, P., Tang, M. and Moriarty, J.A. (unpublished).
17.Duesbery, M.S., Vitek, V.: Plastic anisotropy in bcc transition metals. Acta Mater. 46, 1481 (1998).
18.Rao, S.I., Woodward, C.: Atomistic simulations of (a/2)〈111〉 screw dislocations in bcc Mo using a model generalized pseudopotential theory potential. Philos. Mag. A 81, 1317 (2001).
19.Frederiksen, S.L., Jacobsen, K.W.: Density-functional theory studies of screw dislocation core structures in bcc metals. Philos. Mag. 83, 365 (2003).
20.Ismail-Beigi, S., Arias, T.A.: Ab initio study of screw dislocations in Mo and Ta: A new picture of plasticity in bcc transition metals. Phys. Rev. Lett. 84, 1499 (2000).
21.Woodward, C., Rao, S.I.: Flexible ab initio boundary conditions: Simulating isolated dislocations in bcc Mo and Ta. Phys. Rev. Lett. 88, 216402 (2002).
22.Mrovec, M., Nguyen-Manh, D., Pettifor, D.G., Vitek, V.: Bond-order potential for molybdenum: Application to dislocation behavior. Phys. Rev. B 69, 094115 (2004).
23.Seeger, A., Hollang, L.: The flow-stress asymmetry of ultra-pure molybdenum single crystals. Mater. Trans. JIM 41, 141 (2000).
24.Hollang, L., Hommel, M., Seeger, A.: The flow stress of ultra-high-purity molybdenum single crystals. Phys. Status Solidi A 160, 329 (1997).
25.Suzuki, T., Kaminura, Y., Kirchner, H.O.K.: Plastic homology of bcc metals. Philos. Mag. A 79, 1629 (1999).
26.Tang, M., Kubin, L.P., Canova, G.R.: Dislocation mobility and the mechanical response of bcc single crystals: A mesoscopic approach. Acta Mater. 46, 3221 (1998).
27.Wasserbäch, W.: Plastic deformation and dislocation arrangement of Nb–34at.% Ta alloy single crystals. Philos. Mag. A 53, 335 (1986).
28.Orlikowski, D.A., Söderlind, P. and Moriarty, J.A. (unpublished).
29.Söderlind, P., Moriarty, J.A.: First-principles theory of Ta up to 10 mbar pressure: Structural and mechanical properties. Phys. Rev. B 57, 10340 (1998).
30.Walker, E., Bujard, P.: Anomalous temperature behavior of the shear elastic constant C 44 in tantalum. Solid State Commun. 34, 691 (1980).
31.Katahara, K.W., Manghnani, M.H., Fisher, E.S.: Pressure derivatives of the elastic moduli of bcc Ti–V–Cr, Nb–Mo and Ta–W alloys. J. Phys. F: Metal Phys. 9, 773 (1979).
32.Cynn, H., Yoo, C-S. Single crystal elastic constants of tantalum to 105 GPa. Lawrence Livermore National Laboratory report UCRL-JC-137930 (2000).
33.Steinberg, D.J., Cochran, S.G., Guinan, J.: A constitutive model for metals applicable at high-strain rate. J. Appl. Phys. 51, 1498 (1980).
34.McMahan, A.K.: Two-center s-f Slater-Koster integrals. Phys. Rev. B 58, 4293 (1998).
35.Glosli, J.N. (unpublished).
36.Streitz, F.H., Glosli, J.N., Patel, M.V. Beyond finite-size scaling: Modeling of molten Ta on BlueGene/L. Phys. Rev Lett. (2006, in press).
37.Wong, J., Krisch, M., Farber, D.L., Occelli, F., Schwartz, A.J., Chiang, T-C., Wall, M., Boro, C., Xu, R.: Phonon dispersions of fcc δ-plutonium-gallium by inelastic x-ray scattering. Science 301, 1078 (2003).

Keywords

Robust quantum-based interatomic potentials for multiscale modeling in transition metals

  • John A. Moriarty (a1), Lorin X. Benedict (a1), James N. Glosli (a1), Randolph Q. Hood (a1), Daniel A. Orlikowski (a1), Mehul V. Patel (a1), Per Söderlind (a1), Frederick H. Streitz (a1), Meijie Tang (a1) and Lin H. Yang (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed