Skip to main content Accessibility help

A review of catalytically grown carbon nanofibers

  • N.M. Rodriguez (a1)


Carbon nanofibers (sometimes known as carbon filaments) can be produced in a relative large scale by the catalytic decomposition of certain hydrocarbons on small metal particles. The diameter of the nanofibers is governed by that of the catalyst particles responsible for their growth. By careful manipulation of various parameters it is possible to generate carbon nanofibers in assorted conformations and at the same time also control the degree of their crystalline order. This paper is a review of the recent advances made in the development of these nanostructures, with emphasis both on the fundamental aspects surrounding the growth of the material and a discussion of the key factors which enable one to control their chemical and physical properties. Attention is also given to some of the possible applications of the nanostructures which center around the unique blend of properties exhibited by the material.



Hide All
1Iijima, S., Nature 354, 56 (1991).
2Baker, R. T. K. and Harris, P. S., in Chemistry and Physics of Carbon, edited by Walker, P. L. Jr. and Thrower, P. A. (Marcel Dekker, New York, 1978), Vol. 14, p. 83.
3Oberlin, A., Endo, M., and Koyama, T., J. Cryst. Growth 32, 335 (1976).
4Dresselhaus, M. S., Dresselhaus, G., Sugihara, K., Spain, I. L., and Goldberg, H. A., Graphite Fibers and Filaments, Springer Series in Materials Science 5 (Springer-Verlag, New York, 1988).
5Carbon Fibers, Filaments and Composites, edited by Figueiredo, J. L., Bernardo, C. A., Baker, R. T. K., and Huttinger, K. J., NATO ASI Series (Kluwer Academic Publishers, Dordrecht, The Netherlands, 1989), Vol. 177, pp. 405, 562.
6Schutzenberger, P., C. R. Acad. Sci. Paris 111, 774 (1980).
7Rostrup-Nielsen, J. R., Steam Reforming Catalysts, Tekorisk Forlay A/S (Danish Technical Press, Copenhagen, 1975).
8Trimm, D. L., Catal. Rev.-Sci. Eng. 16, 155 (1977).
9Coke Formation on Metal Surfaces, edited by Albright, L. F. and Baker, R. T. K., ACS Symposium Series 202 (1982).
10Bennett, M. J. and Price, J. B., J. Mater. Sci. 16, 170 (1981).
11Bartholomew, C. H., Catal. Rev.-Sci. Eng. 24, 67 (1982).
12Baker, R. T. K., Barber, M. A., Harris, P. S., Feates, F. S., and Waite, R. J., J. Catal. 26, 51 (1972).
13Baker, R. T. K., Terry, S., and Harris, P. S., Nature 253, 37 (1975).
14Baker, R. T. K., Harris, P. S., Thomas, R. B., and Waite, R. J., J. Catal. 30, 86 (1973).
15Boehm, H. P., Carbon 11, 583 (1973).
16Tavares, M. T., Bernardo, C. A., Alstrup, I., and Rostrup-Nielsen, J. R., J. Catal. 100, 545 (1986).
17Motojima, S., Kawaguchi, M., Nozaki, K., and Iwanaga, H., Carbon 29, 379 (1991).
18Baird, T., Fryer, J. R., and Grant, B., Nature 233, 329 (1971).
19Audier, M., Oberlin, A., and Coulon, M., J. Cryst. Growth 55, 549 (1981).
20Boellaard, E., DeBokx, P. K., Kock, A. J. H. M., and Geus, J. W., J. Catal. 96, 481 (1985).
21Raghavan, M., Proc. 37th Annual EMSA Meeting, edited by Bailey, G. W., p. 484.
22Audier, M., Oberlin, A., Oberlin, M., Coulon, M., and Bonnetain, L., Carbon 19, 217 (1981).
23Tibbetts, G. G., J. Cryst. Growth 66, 632 (1984).
24Yang, R. T. and Chen, J. P., J. Catal. 115, 52 (1989).
25Goodman, D. W., Kelley, R. D., Madey, T. E., and Yates, J. T. Jr., J. Catal. 63, 226 (1980).
26Nakamura, J., Hirano, H., Xie, M., Matsuo, I., Yamada, T., and Tanaka, K., Surf. Sci. 222, L809 (1989).
27Figueiredo, J. L., Bernardo, C. A., Chludzinski, J. J., and Baker, R. T. K., J. Catal. 110, 127 (1988).
28Koyama, T., Carbon 10, 757 (1972).

Related content

Powered by UNSILO

A review of catalytically grown carbon nanofibers

  • N.M. Rodriguez (a1)


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.