Skip to main content Accessibility help

Revealing the ductility of nanoceramic MgAl2O4

  • Bin Chen (a1), Yuanjie Huang (a1), Jianing Xu (a1), Xiaoling Zhou (a1), Zhiqiang Chen (a1), Hengzhong Zhang (a1), Jie Zhang (a2), Jianqi Qi (a2), Tiecheng Lu (a2), Jillian F. Banfield (a3), Jinyuan Yan (a4), Selva Vennila Raju (a4), Arianna E. Gleason (a4), Simon Clark (a4) and Alastair A. MacDowell (a4)...


Ceramics are strong but brittle. According to the classical theories, ceramics are brittle mainly because dislocations are suppressed by cracks. Here, the authors report the combined elastic and plastic deformation measurements of nanoceramics, in which dislocation-mediated stiff and ductile behaviors were detected at room temperature. In the synchrotron-based deformation experiments, a marked slope change is observed in the stress–strain relationship of MgAl2O4 nanoceramics at high pressures, indicating that a deformation mechanism shift occurs in the compression and that the nanoceramics sample is elastically stiffer than its bulk counterpart. The bulk-sized MgAl2O4 shows no texturing at pressures up to 37 GPa, which is compatible with the brittle behaviors of ceramics. Surprisingly, substantial texturing is seen in nanoceramic MgAl2O4 at pressures above 4 GPa. The observed stiffening and texturing indicate that dislocation-mediated mechanisms, usually suppressed in bulk-sized ceramics at low temperature, become operative in nanoceramics. This makes nanoceramics stiff and ductile.


Corresponding author

a)Address all correspondence to this author. e-mail:


Hide All

Present address: SLAC National Accelerator Laboratory, Menlo Park, CA 94,305, USA.



Hide All
1.Clegg, W.J.: Controlling cracks in ceramics. Science 286, 10971099 (1999).
2.Karch, J., Birringer, R., and Gleiter, H.: Ceramics ductile at low temperature. Nature 330, 556558 (1987).
3.Dominguez-Rodriguez, A., Gómez-García, D., Zapata-Solvas, E., Shen, J.Z., and Chaim, R.: Making ceramics ductile at low homologous temperatures. Scr. Mater. 56, 8991 (2007).
4.Jang, D. and Greer, J.R.: Transition from a strong-yet-brittle to a stronger-and-ductile state by size reduction of metallic glasses. Nat. Mater. 9, 215 (2010).
5.Siegel, R.: Materials Science and Technology—A Comprehensive Treatment, Vol. 15: Processing of Metals and Alloys, ed. Cahn, R.W. (VCH, Weinheim, Germany, 1991).
6.Gleiter, H.: Nanocrystalline materials. Prog. Mater. Sci. 33, 223315 (1989).
7.Kumar, K.S., Suresh, S., Chisholm, M.F., Horton, J.A., and Wang, P.: Deformation of electrodeposited nanocrystalline nickel. Acta Mater. 51, 387405 (2003).
8.Shan, Z.W., Wiezorek, J.M., Stach, E.A., Follstaedt, D.M., Knapp, J.A., and Mao, S.X.: Dislocation dynamics in nanocrystalline nickel. Phys. Rev. Lett. 98, 095502 (2007).
9.Wang, L., Han, X., Liu, P., Yue, Y., Zhang, Z., and Ma, E.: In situ observation of dislocation behavior in nanometer grains. Phys. Rev. Lett. 105, 135501 (2010).
10.Chen, M., Ma, E., Hemker, K.J., Sheng, H., Wang, Y., and Cheng, X.: Deformation twinning in nanocrystalline aluminum. Science 300, 12751277 (2003).
11.Lu, L., Chen, X., Huang, X., and Lu, K.: Revealing the maximum strength in nanotwinned copper. Science 323, 607610 (2009).
12.Li, X., Wei, Y., Lu, L., Lu, K., and Gao, H.: Dislocation nucleation governed softening and maximum strength in nano-twinned metals. Nature 464, 877880 (2010).
13.Yamakov, V., Wolf, D., Phillpot, S.R., Mukherjee, A.K., and Gleiter, H.: Dislocation processes in the deformation of nanocrystalline aluminium by molecular-dynamics simulation. Nat. Mater. 1, 4548 (2002).
14.Murayama, M., Howe, J.M., Hidaka, H., and Takaki, S.: Atomic-level observation of disclination dipoles in mechanically milled, nanocrystalline Fe. Science 295, 24332435 (2002).
15.Schiøtz, J. and Jacobsen, K.W.: A maximum in the strength of nanocrystalline copper. Science 301, 13571359 (2003).
16.Penn, R.L. and Banfield, J.F.: Imperfect oriented attachment: Dislocation generation in defect-free nanocrystals. Science 281, 969971 (1998).
17.Weissmüller, J. and Markmann, J.: Deforming nanocrystalline metals: New insights, new puzzles. Adv. Eng. Mater. 7, 202207 (2005).
18.Tolbert, S.H., Herhold, A.B., Brus, L.E., and Alivisatos, A.: Pressure-induced structural transformations in Si nanocrystals: Surface and shape effects. Phys. Rev. Lett. 76, 4384 (1996).
19.Tolbert, S. and Alivisatos, A.: Size dependence of a first order solid-solid phase transition: The wurtzite to rock salt transformation in CdSe nanocrystals. Science 265, 373376 (1994).
20.Cottrell, A.H.: Theory of brittle fracture in steel and similar metals. Trans. Metall. Soc. AIME 212 (1958).
21.Yip, S.: Nanocrystalline metals: Mapping plasticity. Nat. Mater. 3, 11 (2004).
22.Dal Maschio, R., Fabbri, B., and Fiori, C.: Industrial applications of refractories containing magnesium aluminate spinel. Ind. Ceram. 8, 121126 (1988).
23.Burnley, P. and Green, H. II: Stress dependence of the mechanism of the olivine–spinel transformation. Nature 338, 753 (1989).
24.Merkel, S., McNamara, A.K., Kubo, A., Speziale, S., Miyagi, L., Meng, Y., Duffy, T.S., and Wenk, H.R.: Deformation of (Mg,Fe)SiO3 post-perovskite and D″ anisotropy. Science 316, 17291732 (2007).
25.Kruger, M., Nguyen, J., Caldwell, W., and Jeanloz, R.: Equation of state of MgAl2O4 spinel to 65 GPa. Phys. Rev. B 56, 1 (1997).
26.Levy, D., Pavese, A., and Hanfland, M.: Synthetic MgAl2O4 (spinel) at high-pressure conditions (0.0001–30 GPa): A synchrotron X-ray powder diffraction study. Am. Mineral. 88, 9398 (2003).
27.Lutterotti, L., Matthies, S., Wenk, H.R., Schultz, A.S., and Richardson, J.W.: Combined texture and structure analysis of deformed limestone from time-of-flight neutron diffraction spectra. J. Appl. Phys. 81, 594 (1997).
28.Birch, F.: Finite strain isotherm and velocities for single-crystal and polycrystalline NaCl at high pressures and 300 K. J. Geophys. Res.: Solid Earth 83, 12571268 (1978).
29.Nix, W.D. and Gao, H.: Indentation size effects in crystalline materials: A law for strain gradient plasticity. J. Mech. Phys. Solids 46, 411425 (1998).
30.Budiman, A., Han, S., Greer, J., Tamura, N., Patel, J., and Nix, W.: A search for evidence of strain gradient hardening in Au submicron pillars under uniaxial compression using synchrotron X-ray microdiffraction. Acta Mater. 56, 602608 (2008).
31.Groma, I. and Borbely, A.: Diffraction Analysis of the Microstructure of Materials (Springer Science & Business Media, 2004).
32.Wertheim, G., Butler, M., West, K., and Buchanan, D.: Determination of the Gaussian and Lorentzian content of experimental line shapes. Rev. Sci. Instrum. 45, 13691371 (1974).
33.Chen, B., Lutker, K., Raju, S.V., Yan, J., Kanitpanyacharoen, W., Lei, J., Yang, S., Wenk, H.R., Mao, H.K., and Williams, Q.: Texture of nanocrystalline nickel: Probing the lower size limit of dislocation activity. Science 338, 14481451 (2012).
34.Ali, H.P.A., Tamura, N., and Budiman, A.S.: Probing plasticity and strain-rate effects of indium submicron pillars using synchrotron Laue X-ray microdiffraction. IEEE Trans. Device Mater. Reliab. 18, 490497 (2018).
35.Mitchell, T.E.: Dislocations and mechanical properties of MgO–Al2O3 spinel single crystals. J. Am. Ceram. Soc. 82, 33053316 (1999).
36.Kocks, U.F., Tomé, C.N., Wenk, H-R., and Beaudoin, A.J.: Texture and Anisotropy: Preferred Orientations in Polycrystals and Their Effect on Materials Properties (Cambridge university Press, 2000).
37.Hirth, J.P. and Lothe, J.: Theory of Dislocations (Kreiger Publishing, Malabar, U.K., 1992).
38.Nieh, T. and Wadsworth, J.: Hall-Petch relation in nanocrystalline solids. Scr. Metall. Mater. 25, 955958 (1991).
39.Anderson, O.L. and Isaak, D.G.: Elastic constants of mantle minerals at high temperature. In Mineral physics & crystallography: A handbook of physical constants, Vol. 2 (1995); pp. 6497.
40.Wdowik, U., Parliński, K., and Siegel, A.: Elastic properties and high-pressure behavior of MgAl2O4 from ab initio calculations. J. Phys. Chem. Solids 67, 14771483 (2006).
41.Doukhan, N., Duclos, R., and Escaig, B.: Sessile dissociation in the stoichiometric spinel MgAl2O4. J. Phys. 40, 381387 (1979).
42.Ashby, M., Gelles, S., and Tanner, L.E.: The stress at which dislocations are generated at a particle-matrix interface. Philos. Mag. 19, 757771 (1969).
43.Meade, C. and Jeanloz, R.: Yield strength of the B1 and B2 phases of NaCl. J. Geophys. Res.: Solid Earth 93, 32703274 (1988).
44.Dauskardt, R.: A frictional-wear mechanism for fatigue-crack growth in grain bridging ceramics. Acta Metall. Mater. 41, 27652781 (1993).
45.Radchenko, I., Anwarali, H., Tippabhotla, S., and Budiman, A.: Effects of interface shear strength during failure of semicoherent metal–metal nanolaminates: An example of accumulative roll-bonded Cu/Nb. Acta Mater. 156, 125135 (2018).
46.Gilbert, B., Huang, F., Zhang, H., Waychunas, G.A., and Banfield, J.F.: Nanoparticles: Strained and stiff. Science 305, 651654 (2004).
47.Lee, G., Kim, J-Y., Burek, M.J., Greer, J.R., and Tsui, T.Y.: Plastic deformation of indium nanostructures. Mater. Sci. Eng., A 528, 61126120 (2011).
48.Razorenov, S.: Influence of structural factors on the strength properties of aluminum alloys under shock wave loading. Matter Radiat. Extremes 3, 145 (2018).
49.Chung, H-Y., Weinberger, M.B., Levine, J.B., Kavner, A., Yang, J-M., Tolbert, S.H., and Kaner, R.B.: Synthesis of ultra-incompressible superhard rhenium diboride at ambient pressure. Science 316, 436439 (2007).
50.Godefroo, S., Hayne, M., Jivanescu, M., Stesmans, A., Zacharias, M., Lebedev, O., Van Tendeloo, G., and Moshchalkov, V.V.: Classification and control of the origin of photoluminescence from Si nanocrystals. Nat. Nanotechnol. 3, 174 (2008).
51.Jackson, M., Robinson, G., Ali, N., Kousar, Y., Mei, S., Gracio, J., Taylor, H., and Ahmed, W.: Surface engineering of artificial heart valve disks using nanostructured thin films deposited by chemical vapour deposition and sol–gel methods. J. Med. Eng. Technol. 30, 323329 (2006).
52.Lei, J., Chen, B., Guo, S., Wang, K., Tan, L., Khosravi, E., Yan, J., Vennila Raju, S., and Yang, S.: Structural and mechanical stability of dilute yttrium doped chromium. Appl. Phys. Lett. 102, 021901 (2013).
53.Presting, H. and König, U.: Future nanotechnology developments for automotive applications. Mater. Sci. Eng., C 23, 737741 (2003).
54.Ikesue, A. and Aung, Y.L.: Ceramic laser materials. Nat. Photonics 2, 721 (2008).
55.Lu, T., Chang, X., Qi, J., Luo, X., Wei, Q., Zhu, S., Sun, K., Lian, J., and Wang, L.: Low-temperature high-pressure preparation of transparent nanocrystalline MgAl2O4 ceramics. Appl. Phys. Lett. 88, 213120 (2006).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed