Skip to main content Accessibility help

Revealing deformation mechanisms in Mg–Y alloy by in situ deformation of nano-pillars with mediated lateral stiffness

  • Dalong Zhang (a1), Lin Jiang (a1), Xin Wang (a1), Irene J. Beyerlein (a2), Andrew M. Minor (a3), Julie M. Schoenung (a1), Subhash Mahajan (a4) and Enrique J. Lavernia (a1)...


In our previous study, we observed a lack of $\left\{ {10\bar{1}2} \right\}$ twinning in a deformed Mg–Y alloy, which contributed to the observed yield “symmetry.” However, the effects of texture and grain size on polycrystalline deformation made it difficult to fully understand why twinning was not active. Therefore, we report herein in-depth study by in situ transmission electron microscopy, i.e., in situ TEM. The in situ deformation of nano-sized Mg–Y pillars revealed that prismatic slip was favored over twinning, namely, the critical stress required to activate prismatic slip was lower than that for twinning. This finding diametrically differs from that reported in other nano/micro-pillar deformation studies, where twinning is always the dominant deformation mechanism. By measuring the critical stresses for basal, prismatic, and pyramidal slip systems, this in situ TEM study also sheds light on the effects of the alloying element Y on reducing the intrinsic plastic anisotropy in the Mg matrix.


Corresponding author

a)Address all correspondence to this author. e-mail:


Hide All

Present address: Pacific Northwest National Laboratory.



Hide All
1.El Kadiri, H., Barrett, C.D., Wang, J., and Tomé, C.N.: Why are twins profuse in magnesium? Acta Mater. 85, 354 (2015).
2.Yoo, M.H.: Slip, twinning, and fracture in hexagonal close-packed metals. Metall. Mater. Trans. A 12, 409 (1981).
3.Mayama, T., Aizawa, K., Tadano, Y., and Kuroda, M.: Influence of twinning deformation and lattice rotation on strength differential effect in polycrystalline pure magnesium with rolling texture. Comput. Mater. Sci. 47, 448 (2009).
4.Chino, Y., Kado, M., and Mabuchi, M.: Enhancement of tensile ductility and stretch formability of magnesium by addition of 0.2 wt% (0.035 at.%) Ce. Mater. Sci. Eng., A 494, 343 (2008).
5.Hirsch, J. and Al-Samman, T.: Superior light metals by texture engineering: Optimized aluminum and magnesium alloys for automotive applications. Acta Mater. 61, 818 (2013).
6.Barnett, M.R., Keshavarz, Z., Beer, A.G., and Atwell, D.: Influence of grain size on the compressive deformation of wrought Mg–3Al–1Zn. Acta Mater. 52, 5093 (2004).
7.Ghaderi, A. and Barnett, M.R.: Sensitivity of deformation twinning to grain size in titanium and magnesium. Acta Mater. 59, 7824 (2011).
8.Panigrahi, S.K., Kumar, K., Kumar, N., Yuan, W., Mishra, R.S., DeLorme, R., Davis, B., Howell, R.A., and Cho, K.: Transition of deformation behavior in an ultrafine grained magnesium alloy. Materials Science and Engineering: Mater. Sci. Eng., A 549, 123 (2012).
9.Lee, W.T., Chou, Y.W., Hsiao, C.I., Chang, C.P., Chang, L., and Kao, P.W.: Compression along the easy-glide orientation of ultrafine and fine-grained Mg–3Al–1Zn alloy. Metall. Mater. Trans. A 41, 3282 (2010).
10.Choi, H.J., Kim, Y., Shin, J.H., and Bae, D.H.: Deformation behavior of magnesium in the grain size spectrum from nano- to micrometer. Materials Science and Engineering: Mater. Sci. Eng., A 527, 1565 (2010).
11.Suhuddin, U.F.H.R., Mironov, S., Sato, Y.S., Kokawa, H., and Lee, C.W.: Grain structure evolution during friction-stir welding of AZ31 magnesium alloy. Acta Mater. 57, 5406 (2009).
12.Mishra, R.S. and Ma, Z.Y.: Friction stir welding and processing. Mater. Sci. Eng., R 50, 1 (2005).
13.Sandlöbes, S., Zaefferer, S., Schestakow, I., Yi, S., and Gonzalez-Martinez, R.: On the role of non-basal deformation mechanisms for the ductility of Mg and Mg–Y alloys. Acta Mater. 59, 429 (2011).
14.Sandlöbes, S., Pei, Z., Friák, M., Zhu, L.F., Wang, F., Zaefferer, S., Raabe, D., and Neugebauer, J.: Ductility improvement of Mg alloys by solid solution: Ab initio modeling, synthesis and mechanical properties. Acta Mater. 70, 92 (2014).
15.Stanford, N., Marceau, R.K.W., and Barnett, M.R.: The effect of high yttrium solute concentration on the twinning behaviour of magnesium alloys. Acta Mater. 82, 447 (2015).
16.Stanford, N., Cottam, R., Davis, B., and Robson, J.: Evaluating the effect of yttrium as a solute strengthener in magnesium using in situ neutron diffraction. Acta Mater. 78, 1 (2014).
17.Tang, L., Liu, W., Ding, Z., Zhang, D., Zhao, Y., Lavernia, E.J., and Zhu, Y.: Alloying Mg with Gd and Y: Increasing both plasticity and strength. Comput. Mater. Sci. 115, 85 (2016).
18.Zhang, D., Jiang, L., Schoenung, J.M., Mahajan, S., and Lavernia, E.J.: TEM study on relationship between stacking faults and non-basal dislocations in Mg. Philos. Mag., 1 (2015).
19.Yasi, J.A., Hector, L.G. Jr., and Trinkle, D.R.: Prediction of thermal cross-slip stress in magnesium alloys from a geometric interaction model. Acta Mater. 60, 2350 (2012).
20.Yasi, J.A., Hector, L.G. Jr., and Trinkle, D.R.: First-principles data for solid-solution strengthening of magnesium: From geometry and chemistry to properties. Acta Mater. 58, 5704 (2010).
21.Zhang, D., Wen, H., Kumar, M.A., Chen, F., Zhang, L., Beyerlein, I.J., Schoenung, J.M., Mahajan, S., and Lavernia, E.J.: Yield symmetry and reduced strength differential in Mg–2.5Y alloy. Acta Mater. 120, 75 (2016).
22.Yu, Q., Legros, M., and Minor, A.M.: In situ TEM nanomechanics. MRS Bull. 40, 62 (2015).
23.Legros, M.: In situ mechanical TEM: Seeing and measuring under stress with electrons. C. R. Phys. 15, 224 (2014).
24.Greer, J.R. and De Hosson, J.T.M.: Plasticity in small-sized metallic systems: Intrinsic versus extrinsic size effect. Prog. Mater. Sci. 56, 654 (2011).
25.Xie, K.Y., Shrestha, S., Cao, Y., Felfer, P.J., Wang, Y., Liao, X., Cairney, J.M., and Ringer, S.P.: The effect of pre-existing defects on the strength and deformation behavior of α-Fe nanopillars. Acta Mater. 61, 439 (2013).
26.Yu, Q., Qi, L., Chen, K., Mishra, R.K., Li, J., and Minor, A.M.: The nanostructured origin of deformation twinning. Nano Lett. 12, 887 (2012).
27.Ye, J., Mishra, R.K., Sachdev, A.K., and Minor, A.M.: In situ TEM compression testing of Mg and Mg–0.2 wt% Ce single crystals. Scr. Mater. 64, 292 (2011).
28.Liu, B.Y., Wang, J., Li, B., Lu, L., Zhang, X.Y., Shan, Z.W., Li, J., Jia, C.L., Sun, J., and Ma, E.: Twinning-like lattice reorientation without a crystallographic twinning plane. Nat. Commun. 5 (2014).
29.Kim, G.S., Yi, S., Huang, Y., and Lilleodden, E.: Twining and slip activity in magnesium $\left\langle {11\bar{2}0} \right\rangle$ single crystal. MRS Online Proc. Libr. 1224 (2009).
30.Lilleodden, E.: Microcompression study of Mg(0001) single crystal. Scr. Mater. 62, 532 (2010).
31.Byer, C.M., Li, B., Cao, B., and Ramesh, K.T.: Microcompression of single-crystal magnesium. Scr. Mater. 62, 536 (2010).
32.Aitken, Z.H., Fan, H., El-Awady, J.A., and Greer, J.R.: The effect of size, orientation and alloying on the deformation of AZ31 nanopillars. J. Mech. Phys. Solids 76, 208 (2015).
33.Zhou, C., Beyerlein, I.J., and LeSar, R.: Plastic deformation mechanisms of fcc single crystals at small scales. Acta Mater. 59, 7673 (2011).
34.Zhou, C., Biner, S.B., and LeSar, R.: Discrete dislocation dynamics simulations of plasticity at small scales. Acta Mater. 58, 1565 (2010).
35.Yu, Q., Qi, L., Mishra, R.K., Li, J., and Minor, A.M.: Reducing deformation anisotropy to achieve ultrahigh strength and ductility in Mg at the nanoscale. Proc. Natl. Acad. Sci. U. S. A. 110, 13289 (2013).
36.Wang, J. and Stanford, N.: Investigation of precipitate hardening of slip and twinning in Mg5% Zn by micropillar compression. Acta Mater. 100, 53 (2015).
37.Jennings, A.T., Burek, M.J., and Greer, J.R.: Microstructure versus size: Mechanical properties of electroplated single crystalline Cu nanopillars. Phys. Rev. Lett. 104, 135503 (2010).
38.Partridge, P.G.: The crystallography and deformation modes of hexagonal close-packed metals. Metall. Rev. 12, 169 (1967).
39.Koike, J., Kobayashi, T., Mukai, T., Watanabe, H., Suzuki, M., Maruyama, K., and Higashi, K.: The activity of non-basal slip systems and dynamic recovery at room temperature in fine-grained AZ31B magnesium alloys. Acta Mater. 51, 2055 (2003).
40.Byer, C.M. and Ramesh, K.T.: Effects of the initial dislocation density on size effects in single-crystal magnesium. Acta Mater. 61, 3808 (2013).
41.Xie, K.Y., Alam, Z., Caffee, A., and Hemker, K.J.: Pyramidal I slip in c-axis compressed Mg single crystals. Scr. Mater. 112, 75 (2016).
42.Liu, B-Y., Wan, L., Wang, J., Ma, E., and Shan, Z-W.: Terrace-like morphology of the boundary created through basal-prismatic transformation in magnesium. Scr. Mater. 100, 86 (2015).
43.Beyerlein, I.J., McCabe, R.J., and Tomé, C.N.: Effect of microstructure on the nucleation of deformation twins in polycrystalline high-purity magnesium: A multi-scale modeling study. J. Mech. Phys. Solids 59, 988 (2011).
44.Niezgoda, S.R., Kanjarla, A.K., Beyerlein, I.J., and Tomé, C.N.: Stochastic modeling of twin nucleation in polycrystals: An application in hexagonal close-packed metals. Int. J. Plast. 56, 119 (2014).
45.Zhang, D., Zheng, B., Zhou, Y., Mahajan, S., and Lavernia, E.J.: Prism stacking faults observed contiguous to a $\left\{ {10\bar{1}2} \right\}$ twin in a Mg–Y alloy. Scr. Mater. 76, 61 (2014).
46.Jeong, J., Alfreider, M., Konetschnik, R., Kiener, D., and Oh, S.H.: In situ TEM observation of $\left\{ {10\bar{1}2} \right\}$ twin-dominated deformation of Mg pillars: Twinning mechanism, size effects and rate dependency. Acta Mater. 158, 407 (2018).
47.Kim, K-H., Jeon, J.B., Kim, N.J., and Lee, B-J.: Role of yttrium in activation of 〈c + a〉 slip in magnesium: An atomistic approach. Scr. Mater. 108, 104 (2015).
48.Pei, Z., Zhu, L.F., Friak, M., Sandlobes, S., von Pezold, J., Sheng, H.W., Race, C.P., Zaefferer, S., Svendsen, B., Raabe, D., and Neugebauer, J.: Ab initio and atomistic study of generalized stacking fault energies in Mg and Mg–Y alloys. New J. Phys. 15, 043020 (2013).
49.El-Awady, J.A.: Unravelling the physics of size-dependent dislocation-mediated plasticity. Nat. Commun. 6 (2015).
50.Parthasarathy, T.A., Rao, S.I., Dimiduk, D.M., Uchic, M.D., and Trinkle, D.R.: Contribution to size effect of yield strength from the stochastics of dislocation source lengths in finite samples. Scr. Mater. 56, 313 (2007).
51.Girault, B., Schneider, A.S., Frick, C.P., and Arzt, E.: Strength effects in micropillars of a dispersion strengthened superalloy. Adv. Eng. Mater. 12, 385 (2010).
52.Nie, J.F., Wilson, N.C., Zhu, Y.M., and Xu, Z.: Solute clusters and GP zones in binary Mg–RE alloys. Acta Mater. 106, 260 (2016).
53.Shan, Z.W., Mishra, R.K., Syed Asif, S.A., Warren, O.L., and Minor, A.M.: Mechanical annealing and source-limited deformation in submicrometre-diameter Ni crystals. Nat. Mater. 7, 115 (2008).
54.Yu, Q., Shan, Z.W., Li, J., Huang, X.X., Xiao, L., Sun, J., and Ma, E.: Strong crystal size effect on deformation twinning. Nature 463, 335 (2010).
55.Yu, Q., Sun, J., Morris, J.W. Jr., and Minor, A.M.: Source mechanism of non-basal 〈c + a〉 slip in Ti alloy. Scr. Mater. 69, 57 (2013).
56.Ye, J., Mishra, R.K., and Minor, A.M.: Relating nanoscale plasticity to bulk ductility in aluminum alloys. Scr. Mater. 59, 951 (2008).
57.Ye, J., Mishra, R.K., Pelton, A.R., and Minor, A.M.: Direct observation of the NiTi martensitic phase transformation in nanoscale volumes. Acta Mater. 58, 490 (2010).
58.Husser, E., Lilleodden, E., and Bargmann, S.: Computational modeling of intrinsically induced strain gradients during compression of c-axis-oriented magnesium single crystal. Acta Mater. 71, 206 (2014).
59.Kuroda, M.: Higher-order gradient effects in micropillar compression. Acta Mater. 61, 2283 (2013).
60.Daum, B., Dehm, G., Clemens, H., Rester, M., Fischer, F.D., and Rammerstorfer, F.G.: Elastoplastic buckling as source of misinterpretation of micropillar tests. Acta Mater. 61, 4996 (2013).
61.Kirchlechner, C., Keckes, J., Motz, C., Grosinger, W., Kapp, M.W., Micha, J.S., Ulrich, O., and Dehm, G.: Impact of instrumental constraints and imperfections on the dislocation structure in micron-sized Cu compression pillars. Acta Mater. 59, 5618 (2011).
62.Uchic, M.D., Shade, P.A., and Dimiduk, D.M.: Plasticity of micrometer-scale single crystals in compression. Annu. Rev. Mater. Res. 39, 361 (2009).
63.Shade, P.A., Wheeler, R., Choi, Y.S., Uchic, M.D., Dimiduk, D.M., and Fraser, H.L.: A combined experimental and simulation study to examine lateral constraint effects on microcompression of single-slip oriented single crystals. Acta Mater. 57, 4580 (2009).
64.Kiener, D., Motz, C., and Dehm, G.: Micro-compression testing: A critical discussion of experimental constraints. Materials Science and Engineering: Mater. Sci. Eng., A 505, 79 (2009).


Type Description Title
Supplementary materials

Zhang et al. supplementary material
Zhang et al. supplementary material 1

 Video (2.5 MB)
2.5 MB
Supplementary materials

Zhang et al. supplementary material
Zhang et al. supplementary material 2

 Video (6.3 MB)
6.3 MB
Supplementary materials

Zhang et al. supplementary material
Zhang et al. supplementary material 3

 Video (4.7 MB)
4.7 MB


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed