Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-06-22T16:10:05.430Z Has data issue: false hasContentIssue false

Restructuring of alumina particles using a plasma torch

Published online by Cambridge University Press:  31 January 2011

H. Shim
Affiliation:
Department of Chemical Engineering, The Pennsylvania State University, 133 Fenske Laboratory, University Park, Pennsylvania 16802
J. Phillips*
Affiliation:
Department of Chemical Engineering, The Pennsylvania State University, 133 Fenske Laboratory, University Park, Pennsylvania 16802
I. S. Silva
Affiliation:
FCT/UNL, Dep. QUIMICA, Quinta Da Torre, 2825 Monte Caparica, Portugal
*
a)Address all correspondence to this author.
Get access

Abstract

A method to modify ceramics using a low power microwave plasma torch is described. The size, shape, surface area, and phase of alumina particles were dramatically modified by passage through an atmospheric pressure argon plasma, operated at 1 kW or less power. Specifically, irregularly shaped particles of γ-alumina with an average diameter of 11 μm were converted to smaller (ca. 4 μm) spherical particles primarily consisting of δ- and α- (corundum) phases. Also notable was the finding that modifications of the particles, such as changes in surface area, correlate to applied plasma energy. The plasma torch was operated with an argon flow rate of 5 slpm, power of between 400 and 1000 W, and average particle residence time in the plasma of 0.1 s.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Bennett, E.G., McKinnon, N. A., and Williams, L. S., Nature (London) 217, 1287 (1968).CrossRefGoogle Scholar
2.Thomas, G. and Freim, J., Trans. Am. Nucl. Soc. 21, 182 (1975).Google Scholar
3.Cordone, L.G. and Martinsen, W.E., J. Am. Ceram. Soc. 55, 380 (1972).CrossRefGoogle Scholar
4.Johnson, D. L. and Rizzo, R. A., Ceram. Bull. 59, 467 (1980).Google Scholar
5.Boulos, M. and Pfender, E., MRS Bull. 21, 65 (1996).CrossRefGoogle Scholar
6.Fincke, J. R. and Swank, W. D., in Biomedical Materials and Devices, edited by Hanker, J. S. and Giammara, B. L. (Mater. Res. Soc. Symp. Proc. 110, Pittsburgh, PA, 1988), p. 207.Google Scholar
7.Ishigaki, T., Bando, Y., Moriyoshi, Y., and Boulos, M., J. Mater. Sci. 28, 4223 (1993).CrossRefGoogle Scholar
8.Boulos, M. J., Fauchais, P., and Pfender, E., Thermal Plasmas: Fundamentals and Applications. Vol. I (Plenum Press, New York, 1994).CrossRefGoogle Scholar
9.Johnston, P. D., Phys. Lett. 20, 499 (1966).CrossRefGoogle Scholar
10.Boulos, M., Pure Appl. Chem. 9, 7321 (1985).Google Scholar
11.Kalnicky, D. J., Fassel, V. A., and Kniseley, R. N., Appl. Spectrosc. 31, 137 (1977).CrossRefGoogle Scholar
12.Masamba, W. R. C., Ali, A. H., and Winefordner, J. D., Spectrochim. Acta 47B, 481 (1992).CrossRefGoogle Scholar
13.Tanabe, K., Haraguchi, H., and Fuwa, K., Spectrochim. Acta 38B, 49 (1983).CrossRefGoogle Scholar
14.Brockhaus, A., Korzec, D., Werner, F., Yuan, Y., and Engemann, J., Surf. Coat Technol. 74–75, 431 (1995).CrossRefGoogle Scholar
15.Robinson, D. and Lenn, P. D., Appl. Opt. 6, 983 (1967).CrossRefGoogle Scholar
16.Cortino, J., Saez, M., Quintero, M. C., Menendez, A., Sanchez Uria, E., and Sanz Medel, A., Spectrochim. Acta 47B, 425 (1992).Google Scholar
17.Yoshida, T. and Akashi, K., J. Appl. Phys. 48, 2252 (1977).CrossRefGoogle Scholar
18.Vissokov, G. P. and Brakalov, L. B., J. Mater. Sci. 18, 2011 (1983).CrossRefGoogle Scholar
19.Weimer, A. W., Cochrane, G. A., Eisman, G. A., and Henley, J. P., Aerosol Sci. Technol. 19, 491 (1993).CrossRefGoogle Scholar