Skip to main content Accessibility help
×
Home

Resonant Bragg structures based on III-nitrides

  • Andrey S. Bolshakov (a1), Vladimir V. Chaldyshev (a1), Wsevolod V. Lundin (a1), Alexey V. Sakharov (a1), Andrey F. Tsatsulnikov (a1), Maria A. Yagovkina (a1) and Evgenii E. Zavarin (a1)...

Abstract

We demonstrate a resonant Bragg structure formed by quasi-two-dimensional excitons in periodic systems of InGaN quantum wells (QWs) separated by GaN barriers. When the Bragg resonance and exciton–polariton resonance are tuned to each other, the medium exhibits an exciton-mediated resonantly enhanced optical Bragg reflection. The enhancement factor appeared to be largest for the system of 60 QWs. Owing to a high binding energy and oscillator strength of the excitons in InGaN QWs, the resonant enhancement was achieved at room temperature. The samples were grown by the metal–organic vapor-phase epitaxy (MOVPE) on GaN-on-sapphire templates. The most important technological problem of the developed structures is inhomogeneous broadening of the excitonic states due to nonuniform chemical composition of the QWs driven by InN–GaN phase separation trend. We addressed this problem by variation of the vapor pressure, growth rate, growth interactions, and admixing of hydrogen during the MOVPE. The lowest width of 74 meV at room temperature and 41 meV at 77 K was achieved for the excitonic emission line from a single InGaN QW.

Copyright

Corresponding author

a) Address all correspondence to this author. e-mail: chald.gvg@mail.ioffe.ru

References

Hide All
1. Ivchenko, E.L., Nesviszhskii, A.I., and Jorda, S.: Bragg reflection of light from quantum-well structures. Phys. Solid State 36, 1156 (1994).
2. Chaldyshev, V.V., Bolshakov, A.S., Zavarin, E.E., Sakharov, A.V., Lundin, W.V., Tsatsulnikov, A.F., Yagovkina, M.A., Kim, T., and Park, Y.: Optical lattices of InGaN quantum well excitons. Appl. Phys. Lett. 99, 251103 (2011).
3. Bolshakov, A.S., Chaldyshev, V.V., Zavarin, E.E., Sakharov, A.V., Lundin, W.V., Tsatsulnikov, A.F., and Yagovkina, M.A.: Resonance Bragg structure with double InGaN quantum wells. Phys. Solid State 55, 18171820 (2013).
4. Moram, M.A., Oliver, R.A., Kappers, M.J., and Humphreys, C.J.: The spatial distribution of threading dislocations in gallium nitride films. Adv. Mater. 21, 39413944 (2009).
5. Choi, Y-S., Park, J-H., Kim, S-S., Song, H-J., Lee, S-H., Jung, J-J., and Lee, B-T.: Effects of dislocations on the luminescence of GaN/InGaN multi-quantum-well light-emitting-diode layers. Mater. Lett. 58, 26142617 (2004).
6. Kumar, M., Park, J., Lee, Y., Chung, S., Hong, Ch., and Suh, E.: Improved internal quantum efficiency of green emitting InGaN/GaN multiple quantum wells by in preflow for InGaN well growth. Jpn. J. Appl. Phys. 47, 839842 (2008).
7. Musikhin, Yu., Gerthsen, D., Bedarev, D., Bert, N., Lundin, W., Tsatsul’nikov, A., Sakharov, A., Usikov, A., Alferov, Zh., Krestnikov, I., Ledentsov, N., Hoffmann, A., and Bimberg, D.: Influence of metalorganic chemical vapor deposition growth conditions on In-rich nanoislands formation in InGaN/GaN structures. Appl. Phys. Lett. 80, 20992101 (2002).
8. Shim, H., Choi, R., Jeong, S., Vinh, L., Hong, C-H., Suh, E-K., Lee, H., Kim, Y-W., and Hwang, Y.: Influence of the quantum-well shape on the light emission characteristics of InGaN/GaN quantum-well structures and light-emitting diodes. Appl. Phys. Lett. 81, 35523554 (2002).
9. Soh, C., Liu, W., Teng, J., Chow, S., Ang, S., and Chua, S.: Cool white III-nitride light emitting diodes based on phosphor-free indium-rich InGaN nanostructures. Appl. Phys. Lett. 92, 261909261911 (2008).
10. Sun, Y., Choa, Y-H., Suh, E-K., Lee, H., Choi, R., and Hahn, Y.: Carrier dynamics of high-efficiency green light emission in graded-indium-content InGaN/GaN quantum wells: An important role of effective carrier transfer. Appl. Phys. Lett. 84, 4951 (2004).
11. Choi, S-K., Jang, J-M., Yi, S-H., Kim, J-A., and Jung, W-G.: Fabrication and characterization of self-assembled InGaN quantum dots by periodic interrupted growth. Proc. SPIE 6479, 64791F (2007).
12. Ji, L., Su, Y., Chang, S., Tsai, S., Hung, S., Chuang, R., Fang, Т., and Tsai, T.: Growth of InGaN self-assembled quantum dots and their application to photodiodes. J. Vac. Sci. Technol., A 22, 792795 (2004).
13. Oliver, R., Briggs, G., Kappers, M., Humphreys, C., Yasin, Sh., Rice, J., Smith, J., and Taylor, R.: InGaN quantum dots grown by metalorganic vapor phase epitaxy employing a post-growth nitrogen anneal. Appl. Phys. Lett. 83, 755757 (2003).
14. Wang, Q., Wang, T., Bai, J., Cullis, A., Parbrook, P., and Ranalli, F.: Growth and optical investigation of self-assembled InGaN quantum dots on a GaN surface using a high temperature AlN buffer. J. Appl. Phys. 103, 123522123528 (2008).
15. Wen, T-Ch., Lee, Sh-Ch., and Lee, W-I.: Light-emitting diodes: Research, manufacturing, and applications. Proc. SPIE 4278, 141149 (May 2001).
16. Tsatsulnikov, A.F., Lundin, W.V., Zavarin, E.E., Nikolaev, A.E., Sakharov, A.V., Sizov, V.S., Usov, S.O., Musikhin, Yu.G., and Gerthsen, D.: Influence of hydrogen on local phase separation in InGaN thin layers and properties of light-emitting structures based on them. Semiconductors 45, 271276 (2011).
17. Tsatsulnikov, A.F. and Lundin, W.V.: Stimulated formation of InGaN quantum dots. State-of-the-Art of Quantum Dot System Fabrications, Dr. Ameenah Al-Ahmadi, ed.; ISBN: 978-953-51-0649-4, InTech, DOI: 10.5772/45971. Available from: http://www.intechopen.com/books/state-of-the-art-of-quantum-dot-system-fabrications/stimulated-formation-of-ingan-quantum-dots, 2012.
18. Petrosyan, S.G., Chaldyshev, V.V., and Shik, A.Y.: Luminescence of inhomogeneous semiconducting solid-solutions. Sov. Phys. Semicond. 18, 980984 (1984).
19. Sanford, N.A., Munkholm, A., Krames, M.R., Shapiro, A., Levin, I., Davydov, A.V., Sayan, S., Wielunski, L.S., and Madey, T.E.: Refractive index and birefringence of InxGa1–xN films grown by MOCVD. Phys. Status Solidi C 2(7), 27832786 (2005).
20. Leung, M.M.Y., Djurisic, A.B., and Li, E.H.: Refractive index of InGaN/GaN quantum well. J. Appl. Phys. 84(11), 6312 (1998).
21. Hayes, G.R., Staehli, J.L., Oesterle, U., Deveaud, B., Phillips, R.T., and Ciuti, C.: Suppression of exciton-polariton light absorption in multiple quantum well Bragg structures. Phys. Rev. Lett. 83, 2837 (1999).
22. Hübner, M., Prineas, J.P., Ell, C., Brick, P., Lee, E.S., Khitrova, G., Gibbs, H.M., and Koch, S.W.: Optical lattices achieved by excitons in periodic quantum well structures. Phys. Rev. Lett. 83, 2841 (1999).
23. Goldberg, D., Deych, L.I., Lisyansky, A.A., Shi, Zh., Menon, V.M., Tokranov, V., Yakimov, M., and Oktyabrsky, S.: Exciton-lattice polaritons in multiple-quantum-well-based photonic crystals. Nat. Photonics 3, 662 (2009).
24. Chaldyshev, V.V., Kundelev, E.V., Nikitina, E.V., Egorov, A.Yu., and Gorbatsevich, A.A.: Resonance reflection of light by a periodic system of excitons in GaAs/AlGaAs quantum wells. Semiconductors 46(8), 10161019 (2012).

Resonant Bragg structures based on III-nitrides

  • Andrey S. Bolshakov (a1), Vladimir V. Chaldyshev (a1), Wsevolod V. Lundin (a1), Alexey V. Sakharov (a1), Andrey F. Tsatsulnikov (a1), Maria A. Yagovkina (a1) and Evgenii E. Zavarin (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed