Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-06-20T02:05:51.718Z Has data issue: false hasContentIssue false

Reliability implications of partial shading on CIGS photovoltaic devices: A literature review

Published online by Cambridge University Press:  30 December 2019

Klaas Bakker*
Affiliation:
Delft University of Technology, PVMD, 2628 CD Delft, The Netherlands; and TNO, Energy Transitions—Solliance, 5656 AE Eindhoven, The Netherlands
Arthur Weeber
Affiliation:
Delft University of Technology, PVMD, 2628 CD Delft, The Netherlands; and TNO, Energy Transitions—Solar Energy, 1755 LE Petten, The Netherlands
Mirjam Theelen
Affiliation:
TNO, Energy Transitions—Solliance, 5656 AE Eindhoven, The Netherlands
*
a)Address all correspondence to this author. e-mail: klaas.bakker@solliance.eu
Get access

Abstract

Partial shading of Cu(In,Ga)(Se,S)2 (CIGS) photovoltaic (PV) modules is getting more attention, as is witnessed by the increase in publications on this topic in recent years. This review will give an overview of shading tests executed on CIGS modules and focuses on the more fundamental aspects that are often studied on cells. Generally, CIGS modules display very attractive performance under predictable row-to-row shading. However, potential damage could occur under nonoptimal shading orientations: module output after shading tests could reduce due to the formation of local shunts, often called wormlike defects. The influence of many factors on the formation of these defects, including the internal currents and voltages and the shape and intensity of the shade, will be discussed. This review allows an increased insight in the degradation mechanisms caused by partial shading, which would ultimately lead to the introduction of more shade-tolerant CIGS PV products in the future.

Type
Invited Paper
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Philips, D.S. and Warmuth, W.: Fraunhofer ISE: Photovoltaics Report, Updated: 14 March 2019 (2019).Google Scholar
Birant, G., de Wild, J., Meuris, M., Poortmans, J., and Vermang, B.: Dielectric-based rear surface passivation approaches for Cu(In,Ga)Se2 solar cells—A review. Appl. Sci. 9, 677 (2019).CrossRefGoogle Scholar
Green, M.A., Dunlop, E.D., Levi, D.H., Hohl-Ebinger, J., Yoshita, M., and Ho-Baillie, A.W.Y.: Solar cell efficiency tables (version 54). Prog. Photovolt. Res. Appl. 27, 565 (2019).CrossRefGoogle Scholar
Feurer, T., Reinhard, P., Avancini, E., Bissig, B., Löckinger, J., Fuchs, P., Carron, R., Weiss, T.P., Perrenoud, J., Stutterheim, S., Buecheler, S., and Tiwari, A.N.: Progress in thin film CIGS photovoltaics—Research and development, manufacturing, and applications. Prog. Photovolt. Res. Appl. 25, 645 (2017).CrossRefGoogle Scholar
Branker, K., Pathak, M.J.M., and Pearce, J.M.: A review of solar photovoltaic levelized cost of electricity. Renew. Sustain. Energy Rev. 15, 4470 (2011).CrossRefGoogle Scholar
Ziar, H., Asaei, B., Farhangi, S., Korevaar, M., Isabella, O., and Zeman, M.: Quantification of shading tolerability for photovoltaic modules. IEEE J. Photovolt. 7, 1390 (2017).CrossRefGoogle Scholar
Brecl, K. and Topič, M.: Self-shading losses of fixed free-standing PV arrays. Renewable Energy 36, 3211 (2011).CrossRefGoogle Scholar
Silverman, T.J., Deceglie, M.G., Deline, C., and Kurtz, S.: SPIE Optics + Photonics for Sustainable Energy (2015); p. 95630F.Google Scholar
Silverman, T.J. and Repins, I.: 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (A Joint Conference of 45th IEEE PVSC, 28th PVSEC, & 34th EU PVSEC) (IEEE, Piscataway, 2018); pp. 39323937.Google Scholar
Wendlandt, S. and Podlowski, L.: 35th Photovoltaic Solar Energy Conference and Exhibition (WIP Renewable Energies, Munich, 2018); pp. 12301235.Google Scholar
Sun, X., Raguse, J., Garris, R., Deline, C., Silverman, T., and Alam, M.A.: 2015 IEEE 42nd Photovoltaic Specialist Conference (IEEE, Piscataway, 2015); pp. 16.Google Scholar
Dongaonkar, S., Deline, C., and Alam, M.A.: Performance and reliability implications of two-dimensional shading in monolithic thin-film photovoltaic modules. IEEE J. Photovolt. 3, 1367 (2013).CrossRefGoogle Scholar
Gostein, M. and Dunn, L.: 2011 37th IEEE Photovoltaic Specialists Conference (IEEE, Piscataway, 2011); pp. 003126003131.CrossRefGoogle Scholar
Silverman, T.J. and Ingrid, R.: 33rd European Photovoltaic Solar Energy Conference and Exhibition (WIP Renewable Energies, Munich, 2017); pp. 14221426.Google Scholar
Tzikas, C., Gomez, G., van den Donker, M., Bakker, K., Smets, A.H.M., and Folkerts, W.: 33rd European Photovoltaic Solar Energy Conference and Exhibition (WIP Renewable Energies, Munich, 2017); pp. 15931596.Google Scholar
Mack, P., Walter, T., Kniese, R., Hariskos, D., and Schäffler, R.: 23rd European Photovoltaic Solar Energy Conference and Exhibition (WIP Renewable Energies, Munich, 2008); pp. 21562159.Google Scholar
Silverman, T.J., Mansfield, L., Repins, I., and Kurtz, S.: Damage in monolithic thin-film photovoltaic modules due to partial shade. IEEE J. Photovolt. 6, 1333 (2016).CrossRefGoogle Scholar
Silverman, T.J., Deceglie, M.G., Sun, X., Garris, R.L., Alam, M.A., Deline, C., and Kurtz, S.: Thermal and electrical effects of partial shade in monolithic thin-film photovoltaic modules. IEEE J. Photovolt. 5, 1742 (2015).CrossRefGoogle Scholar
Szaniawski, P., Lindahl, J., Törndahl, T., Zimmermann, U., and Edoff, M.: Light-enhanced reverse breakdown in Cu(In,Ga)Se2 solar cells. Thin Solid Films 535, 326 (2013).CrossRefGoogle Scholar
Carolus, M.D.J., Purohit, Z., Vandenbergh, T., Meuris, M., and Tripathi, B.: 35th European Photovoltaic Solar Energy Conference and Exhibition (WIP Renewable Energies, Munich, 2018); pp. 13431345.Google Scholar
Nardone, M., Dahal, S., and Waddle, J.M.: Shading-induced failure in thin-film photovoltaic modules: Electrothermal simulation with nonuniformities. Sol. Energy 139, 381 (2016).CrossRefGoogle Scholar
van Dyk, E.E., Radue, C., and Gxasheka, A.R.: Characterization of Cu(In,Ga)Se2 photovoltaic modules. Thin Solid Films 515, 6196 (2007).Google Scholar
Westin, P.O., Zimmermann, U., Stolt, L., and Edoff, M.: 24th European Photovoltaic Solar Energy Conference (WIP Renewable Energies, Munich, 2009); pp. 29672970.Google Scholar
Johnston, S., Palmiotti, E., Gerber, A., Guthrey, H., Mansfield, L., Silverman, T.J., Al-Jassiml, M., and Rockett, A.: 2017 IEEE Photovoltaic Specialists Conference (IEEE, Piscataway, 2017); pp. 14001404.CrossRefGoogle Scholar
Palmiotti, E., Johnston, S., Gerber, A., Guthrey, H., Rockett, A., Mansfield, L., Silverman, T.J., and Al-Jassim, M.: Identification and analysis of partial shading breakdown sites in CuInxGa(1−x)Se2 modules. Sol. Energy 161, 1 (2018).CrossRefGoogle Scholar
Johnston, S., Sulas, D., Palmiotti, E., Gerber, A., Guthrey, H., Liu, J., Mansfield, L., Silverman, T.J., Rockett, A., and Al-Jassim, M.: 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC) (IEEE, Piscataway, 2018); pp. 18971901.CrossRefGoogle Scholar
Lee, J.E., Bae, S., Oh, W., Park, H., Kim, S.M., Lee, D., Nam, J., Bin Mo, C., Kim, D., Yang, J., Kang, Y., Lee, H., and Kim, D.: Investigation of damage caused by partial shading of CuInxGa(1−x)Se2 photovoltaic modules with bypass diodes. Prog. Photovolt. Res. Appl. 24, 1035 (2016).CrossRefGoogle Scholar
Richter, M., Neerken, J., and Parisi, J.: 32nd European Photovoltaic Solar Energy Conference and Exhibition (WIP Renewable Energies, Munich, 2016); pp. 11161119.Google Scholar
Richter, J.P.M. and Vrenegor, M.: 33rd European Photovoltaic Solar Energy Conference and Exhibition (WIP Renewable Energies, Munich, 2017); pp. 10171019.Google Scholar
Puttnins, S., Jander, S., Pelz, K., Heinker, S., Daume, F., Rahm, A., Braun, A., and Grundmann, M.: 26th European Photovoltaic Solar Energy Conference and Exhibition (WIP Renewable Energies, Munich, 2011); pp. 24322434.Google Scholar
Puttnins, S., Jander, S., Wehrmann, A., Benndorf, G., Stölzel, M., Müller, A., von Wenckstern, H., Daume, F., Rahm, A., and Grundmann, M.: Breakdown characteristics of flexible Cu(In,Ga)Se2 solar cells. Sol. Energy Mater. Sol. Cells 120, 506 (2014).CrossRefGoogle Scholar
Szaniawski, P., Zabierowski, P., Olsson, J., Zimmermann, U., and Edoff, M.: Advancing the understanding of reverse breakdown in Cu(In,Ga)Se2 solar cells. IEEE J. Photovolt. 7, 1136 (2017).CrossRefGoogle Scholar
Puttnins, S., Purfurst, M., Hartung, M., Lee, H.K., Daume, F., Hartmann, L., Rahm, A., Braun, A., and Grundmann, M.: 27th European Photovoltaic Solar Energy Conference and Exhibition (WIP Renewable Energies, Munich, 2012); pp. 22192221.Google Scholar
Nardone, M. and Dahal, S.: Anomalous reverse breakdown of CIGS devices: Theory and simulation. MRS Adv. 2, 3163 (2017).CrossRefGoogle Scholar
Mortazavi, S., Bakker, K., Carolus, J., Daenen, M., de Amorim Soares, G., Steijvers, H., Weeber, A., and Theelen, M.: 2017 IEEE 44th Photovoltaic Specialist Conference (IEEE, Piscataway, 2017); pp. 28752880.CrossRefGoogle Scholar
Theelen, M., Steijvers, H., Bakker, K., Vink, J., Mortazavi, S., Mulder, A., Barreau, N., Roosen, D., and Haverkamp, E.: 2016 IEEE 43rd Photovoltaic. Specialists Conference (IEEE, Piscataway, 2016); pp. 09290934.CrossRefGoogle Scholar
Herrmann, W. and Alonso, M.C.: 19th EUPVSEC (WIP Renewable Energies, Munich, 2004).Google Scholar
Wendlandt, S., Berendes, S., Weber, T., Berghold, J., Krauter, S., and Grunow, P.: 32nd EUPVSEC (WIP Renewable Energies, Munich, 2016); pp. 22702276.Google Scholar