Hostname: page-component-84b7d79bbc-rnpqb Total loading time: 0 Render date: 2024-07-29T06:44:30.489Z Has data issue: false hasContentIssue false

Recombination on fractal networks: Photon and electron emission following fracture of materials

Published online by Cambridge University Press:  03 March 2011

J.T. Dickinson
Affiliation:
Physics Department, Washington State University, Pullman, Washington 99164-2814
S.C. Langford
Affiliation:
Physics Department, Washington State University, Pullman, Washington 99164-2814
L.C. Jensen
Affiliation:
Physics Department, Washington State University, Pullman, Washington 99164-2814
Get access

Abstract

We report measurements and analysis of fracture-induced photon and electron emissions from several polymeric and inorganic systems on time scales of 10−2 to 103 s following fracture. The dominant mechanism for postfracture emission involves the recombination of mobile free carriers (usually electrons) with immobile recombination centers. The emission decays were modeled as (pseudo)unimolecular and bimolecular recombination on fractal lattices as described by Zumofen, Blumen, and Klafter.1 Although the decay kinetics shows a great deal of variability from material to material, this random walk description of the recombination process provides an excellent description of the emissions over long time scales. This analysis shows a strong correlation between the local structure at the fracture surface and the resulting decays.

Type
Articles
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Zumofen, G., Blumen, A., and Klafter, J., J. Chem. Phys. 84, 6679 (1985).Google Scholar
2Several examples are cited in Molecular Dynamics in Restricted Geometries, edited by Klafter, J. and Drake, J. M. (John Wiley, New York, 1989).Google Scholar
3Kopelman, R., Prasad, J., and Parus, S. J., in Klafter and Drake, op.cit., pp. 145164.Google Scholar
4Byers, J. D., Friedrichs, M. S., Friesner, R. A., and Webber, S. E., in Klafter and Drake, op. cit., pp. 99144.Google Scholar
5Dickinson, J. T., in Adhesive Chemistry, edited by Lee, L-H. (Plenum, New York, 1984), pp. 193243.Google Scholar
6Dickinson, J. T., in Adhesive Bonding, edited by Lee, L-H. (Plenum, New York, 1991), pp. 395423.Google Scholar
7Langford, S. C., Zhenyi, Ma, and Dickinson, J. T., J. Mater. Res. 4, 1272 (1989).CrossRefGoogle Scholar
8Zhenyi, Ma, Langford, S. C., Dickinson, J. T., Engelhard, M. H., and Baer, D. R., J. Mater. Res. 6, 183 (1991).Google Scholar
9Dickinson, J. T. and Castro, A. S., in Cross-linked Polymers: Chemistry, Properties, and Applications, edited by Dickie, R. A., Labana, S. S., and Bauer, R. S. (American Chemical Society, Washington, DC, 1988), pp. 145168.Google Scholar
10Dickinson, J. T., in Non-Destructive Testing of Fibre-Reinforced Plastic Composites II, edited by Summerscales, J. (Elsevier Applied Science, London, 1990), pp. 429482.Google Scholar
11Dickinson, J. T., Park, M. K., Donaldson, E. E., and Jensen, L. C., J. Vac. Sci. Technol. 20, 436 (1982).Google Scholar
12Dickinson, J. T., Jensen, L. C., and Jahan-Latibari, A., J. Vac. Sci. Technol. A 2, 1112 (1984).CrossRefGoogle Scholar
13Dickinson, J. T., Jensen, L. C., and Dion, R. P., J. Appl. Phys. 73, 3047 (1993).Google Scholar
14Scher, H., Shlesinger, M. F., and Bendler, J. T., Phys. Today 44, 26 (1991).Google Scholar
15Fuhrmann, J., Nick, L., Dickinson, J. T., and Jensen, L. C., J. Appl. Polym. Sci. (1993, in press).Google Scholar
16Langford, S. C., Dickinson, J. T., and Jensen, L. C., J. Appl. Phys. 62, 1437 (1987).Google Scholar
17Dickinson, J. T., Jensen, L. C., and Williams, W. D., J. Am. Ceram. Soc. 68, 235 (1985).Google Scholar
18Mandelbrot, B. B., Passoja, D. E., and Paullay, A. J., Nature 308, 721 (1984).Google Scholar
19Mandelbrot, B. B., The Fractal Geometry of Nature (W. H. Freeman, New York, 1983), p. 110.Google Scholar
20Arcangelis, L. de, Hansen, A., Herrmann, H. J., and Roux, S., Phys. Rev. B 40, 877 (1989).Google Scholar
21Måløy, K., Hansen, A., Hinrichsen, E. L., and Roux, S., Phys. Rev. Lett. 68, 213 (1993).CrossRefGoogle Scholar
22Chu, B., Wu, C., Wu, D-Q., and Phillips, J. C., Macromol. 20, 2642 (1987).Google Scholar
23Chu, B. and Wu, C., Macromol. 21, 1729 (1988).Google Scholar
24Rammal, R. and Toulouse, G., J. Phys. Lett. (Paris) 44, L13 (1983).CrossRefGoogle Scholar
25Meakin, P. and Stanley, H. E., J. Phys. A 17, L173 (1984).CrossRefGoogle Scholar
26Toussaint, D. and Wilczek, F., J. Chem. Phys. 78, 2642 (1983).Google Scholar
27Schnörer, H., Kuzovkov, V., and Blumen, A., J. Chem. Phys. 93, 7148 (1990).CrossRefGoogle Scholar
28Williams, R. T., Williams, J. W., Turner, T. J., and Lee, K. H., Phys. Rev. B 20, 1687 (1979).Google Scholar
29Rosenblatt, G. H., Rowe, M. W., Williams, G. P. Jr., Williams, R. T., and Chen, Y., Phys. Rev. B 39, 10309 (1989).CrossRefGoogle Scholar
30Summers, G. P., Wilson, T. M., Jefferies, B. T., Tohver, H. T., Chen, Y., and Abraham, M. M., Phys. Rev. B 27, 1283 (1983).Google Scholar
31Edel, P., Henderson, B., and Romestain, R., J. Phys. C 15, 1569 (1982).CrossRefGoogle Scholar
32Wertz, J. E., Orton, J. W., and Auzins, P., Discuss. Faraday Soc. 31, 140 (1961).Google Scholar
33Walters, G. K. and Estle, T. L., J. Appl. Phys. 32, 1854 (1961).Google Scholar
34Gibson, A., Haydock, R., and LeFemina, J. P., Appl. Surf. Sci. (1993, in press).Google Scholar
35Namba, H. and Murata, Y., J. Phys. Soc. Jpn. 53, 1888 (1984).Google Scholar
36Seiyama, T., Kawabata, K., and Okuda, S., Jpn. J. Appl. Phys. 24, Supplement 24-4, 202 (1985).CrossRefGoogle Scholar
37Langford, S. C., Zhenyi, Ma, Jensen, L. C., and Dickinson, J. T., J. Vac. Sci. Technol. A 8, 3470 (1990).Google Scholar
38Walker, J., Amateur Scientist, Sci. Am. 258, 114 (1988).Google Scholar
39Mecholsky, J. J., Passoja, D. E., and Feinberg-Ringel, K. S., J. Am. Ceram. Soc. 72, 60 (1989).Google Scholar