Skip to main content Accessibility help
×
Home

Recombination on fractal networks: Photon and electron emission following fracture of materials

  • J.T. Dickinson (a1), S.C. Langford (a1) and L.C. Jensen (a1)

Abstract

We report measurements and analysis of fracture-induced photon and electron emissions from several polymeric and inorganic systems on time scales of 10−2 to 103 s following fracture. The dominant mechanism for postfracture emission involves the recombination of mobile free carriers (usually electrons) with immobile recombination centers. The emission decays were modeled as (pseudo)unimolecular and bimolecular recombination on fractal lattices as described by Zumofen, Blumen, and Klafter.1 Although the decay kinetics shows a great deal of variability from material to material, this random walk description of the recombination process provides an excellent description of the emissions over long time scales. This analysis shows a strong correlation between the local structure at the fracture surface and the resulting decays.

Copyright

References

Hide All
1Zumofen, G., Blumen, A., and Klafter, J., J. Chem. Phys. 84, 6679 (1985).
2Several examples are cited in Molecular Dynamics in Restricted Geometries, edited by Klafter, J. and Drake, J. M. (John Wiley, New York, 1989).
3Kopelman, R., Prasad, J., and Parus, S. J., in Klafter and Drake, op.cit., pp. 145164.
4Byers, J. D., Friedrichs, M. S., Friesner, R. A., and Webber, S. E., in Klafter and Drake, op. cit., pp. 99144.
5Dickinson, J. T., in Adhesive Chemistry, edited by Lee, L-H. (Plenum, New York, 1984), pp. 193243.
6Dickinson, J. T., in Adhesive Bonding, edited by Lee, L-H. (Plenum, New York, 1991), pp. 395423.
7Langford, S. C., Zhenyi, Ma, and Dickinson, J. T., J. Mater. Res. 4, 1272 (1989).
8Zhenyi, Ma, Langford, S. C., Dickinson, J. T., Engelhard, M. H., and Baer, D. R., J. Mater. Res. 6, 183 (1991).
9Dickinson, J. T. and Castro, A. S., in Cross-linked Polymers: Chemistry, Properties, and Applications, edited by Dickie, R. A., Labana, S. S., and Bauer, R. S. (American Chemical Society, Washington, DC, 1988), pp. 145168.
10Dickinson, J. T., in Non-Destructive Testing of Fibre-Reinforced Plastic Composites II, edited by Summerscales, J. (Elsevier Applied Science, London, 1990), pp. 429482.
11Dickinson, J. T., Park, M. K., Donaldson, E. E., and Jensen, L. C., J. Vac. Sci. Technol. 20, 436 (1982).
12Dickinson, J. T., Jensen, L. C., and Jahan-Latibari, A., J. Vac. Sci. Technol. A 2, 1112 (1984).
13Dickinson, J. T., Jensen, L. C., and Dion, R. P., J. Appl. Phys. 73, 3047 (1993).
14Scher, H., Shlesinger, M. F., and Bendler, J. T., Phys. Today 44, 26 (1991).
15Fuhrmann, J., Nick, L., Dickinson, J. T., and Jensen, L. C., J. Appl. Polym. Sci. (1993, in press).
16Langford, S. C., Dickinson, J. T., and Jensen, L. C., J. Appl. Phys. 62, 1437 (1987).
17Dickinson, J. T., Jensen, L. C., and Williams, W. D., J. Am. Ceram. Soc. 68, 235 (1985).
18Mandelbrot, B. B., Passoja, D. E., and Paullay, A. J., Nature 308, 721 (1984).
19Mandelbrot, B. B., The Fractal Geometry of Nature (W. H. Freeman, New York, 1983), p. 110.
20Arcangelis, L. de, Hansen, A., Herrmann, H. J., and Roux, S., Phys. Rev. B 40, 877 (1989).
21Måløy, K., Hansen, A., Hinrichsen, E. L., and Roux, S., Phys. Rev. Lett. 68, 213 (1993).
22Chu, B., Wu, C., Wu, D-Q., and Phillips, J. C., Macromol. 20, 2642 (1987).
23Chu, B. and Wu, C., Macromol. 21, 1729 (1988).
24Rammal, R. and Toulouse, G., J. Phys. Lett. (Paris) 44, L13 (1983).
25Meakin, P. and Stanley, H. E., J. Phys. A 17, L173 (1984).
26Toussaint, D. and Wilczek, F., J. Chem. Phys. 78, 2642 (1983).
27Schnörer, H., Kuzovkov, V., and Blumen, A., J. Chem. Phys. 93, 7148 (1990).
28Williams, R. T., Williams, J. W., Turner, T. J., and Lee, K. H., Phys. Rev. B 20, 1687 (1979).
29Rosenblatt, G. H., Rowe, M. W., Williams, G. P. Jr., Williams, R. T., and Chen, Y., Phys. Rev. B 39, 10309 (1989).
30Summers, G. P., Wilson, T. M., Jefferies, B. T., Tohver, H. T., Chen, Y., and Abraham, M. M., Phys. Rev. B 27, 1283 (1983).
31Edel, P., Henderson, B., and Romestain, R., J. Phys. C 15, 1569 (1982).
32Wertz, J. E., Orton, J. W., and Auzins, P., Discuss. Faraday Soc. 31, 140 (1961).
33Walters, G. K. and Estle, T. L., J. Appl. Phys. 32, 1854 (1961).
34Gibson, A., Haydock, R., and LeFemina, J. P., Appl. Surf. Sci. (1993, in press).
35Namba, H. and Murata, Y., J. Phys. Soc. Jpn. 53, 1888 (1984).
36Seiyama, T., Kawabata, K., and Okuda, S., Jpn. J. Appl. Phys. 24, Supplement 24-4, 202 (1985).
37Langford, S. C., Zhenyi, Ma, Jensen, L. C., and Dickinson, J. T., J. Vac. Sci. Technol. A 8, 3470 (1990).
38Walker, J., Amateur Scientist, Sci. Am. 258, 114 (1988).
39Mecholsky, J. J., Passoja, D. E., and Feinberg-Ringel, K. S., J. Am. Ceram. Soc. 72, 60 (1989).

Recombination on fractal networks: Photon and electron emission following fracture of materials

  • J.T. Dickinson (a1), S.C. Langford (a1) and L.C. Jensen (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed