Skip to main content Accessibility help
×
Home

Recent progress in characterization of the core–shell structure of black titania

  • Mengkun Tian (a1), Chenze Liu (a2), Jingxuan Ge (a2), David Geohegan (a3), Gerd Duscher (a4) and Gyula Eres (a5)...

Abstract

The recent observation of spectacular photocatalytic activity enhancements generated tremendous interest in the synthesis, properties, and potential applications of black titania. Most black titania are core–shell structures consisting of a perfect crystalline core surrounded by a defective surface shell. Because the properties are attributed to the defective shell, it is particularly important, but very challenging, to obtain atomic structure information of the core, the shell, and the core–shell relationship on a single particle level. While the role of various synthesis approaches for producing black titania with different properties has been extensively reviewed, this review focuses on understanding the structure–functionality relationship in black titania on a single particle level. We start by introducing the crystal and electronic band structure of different TiO2 phases, followed by the discussion of particle size effects, the origin of lattice distortions, and phase control by synthesis, and concluding with the discussion of crystalline order formation and evolution creating the defective shell.

Copyright

Corresponding author

a)Address all correspondence to these authors. e-mail: mtian37@gatech.edu
b)e-mail: eresg@ornl.gov

Footnotes

Hide All
c)

These authors contributed equally to this work.

This section of Journal of Materials Research is reserved for papers that are reviews of literature in a given area.

Footnotes

References

Hide All
1.Lyu, Z., Liu, B., Wang, R., and Tian, L.: Synergy of palladium species and hydrogenation for enhanced photocatalytic activity of {001} facets dominant TiO2 nanosheets. J. Mater. Res. 32, 2781 (2017).
2.Song, Y., Li, J., and Wang, C.: Modification of porphyrin/dipyridine metal complexes on the surface of TiO2 nanotubes with enhanced photocatalytic activity for photoreduction of CO2 into methanol. J. Mater. Res. 33, 2612 (2018).
3.Chen, X., Liu, L., Yu, P.Y., and Mao, S.S.: Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 331, 746 (2011).
4.Chen, X., Liu, L., and Huang, F.: Black titanium dioxide (TiO2) nanomaterials. Chem. Soc. Rev. 44, 1861 (2015).
5.Liu, X., Zhu, G., Wang, X., Yuan, X., Lin, T., and Huang, F.: Progress in black titania: A new material for advanced photocatalysis. Adv. Energy Mater. 6, 1600452 (2016).
6.Wang, B., Shen, S., and Mao, S.S.: Black TiO2 for solar hydrogen conversion. J. Materiomics. 3, 96 (2017).
7.Wang, Z., Yang, C., Lin, T., Yin, H., Chen, P., Wan, D., Xu, F., Huang, F., Lin, J., Xie, X., and Jiang, M.: H-doped black titania with very high solar absorption and excellent photocatalysis enhanced by localized surface plasmon resonance. Adv. Funct. Mater. 23, 5444 (2013).
8.Zheng, Z., Huang, B., Lu, J., Wang, Z., Qin, X., Zhang, X., Dai, Y., and Whangbo, M.H.: Hydrogenated titania: Synergy of surface modification and morphology improvement for enhanced photocatalytic activity. Chem. Commun. 48, 5733 (2012).
9.Zeng, L., Song, W., Li, M., Zeng, D., and Xie, C.: Catalytic oxidation of formaldehyde on surface of H–TiO2/H–C–TiO2 without light illumination at room temperature. Appl. Catal., B 147, 490 (2014).
10.Yang, C., Wang, Z., Lin, T., Yin, H., Lu, X., Wan, D., Xu, T., Zheng, C., Lin, J., Huang, F., Xie, X., and Jiang, M.: Core–shell nanostructured “black” rutile titania as excellent catalyst for hydrogen production enhanced by sulfur doping. J. Am. Chem. Soc. 135, 17831 (2013).
11.Hoang, S., Berglund, S.P., Hahn, N.T., Bard, A.J., and Mullins, C.B.: Enhancing visible light photo-oxidation of water with TiO2 nanowire arrays via cotreatment with H2 and NH3: Synergistic effects between Ti3+ and N. J. Am. Chem. Soc. 134, 3659 (2012).
12.Wang, W., Lu, C., Ni, Y., Su, M., and Xu, Z.: A new sight on hydrogenation of F and N–F doped {001} facets dominated anatase TiO2 for efficient visible light photocatalyst. Appl. Catal., B 127, 28 (2012).
13.Wang, W., Ni, Y., Lu, C., and Xu, Z.: Hydrogenation temperature related inner structures and visible-light-driven photocatalysis of N–F co-doped TiO2 nanosheets. Appl. Surf. Sci. 290, 125 (2014).
14.Yang, Y., Kao, L.C., Liu, Y., Sun, K., Yu, H., Guo, J., Liou, S.Y.H., and Hoffmann, M.R.: Cobalt-doped black TiO2 nanotube array as a stable anode for oxygen evolution and electrochemical wastewater treatment. ACS Catal. 8, 4278 (2018).
15.Lin, T., Yang, C., Wang, Z., Yin, H., , X., Huang, F., Lin, J., Xie, X., and Jiang, M.: Effective nonmetal incorporation in black titania with enhanced solar energy utilization. Energy Environ. Sci. 7, 967 (2014).
16.Song, H., Li, C., Lou, Z., Ye, Z., and Zhu, L.: Effective formation of oxygen vacancies in black TiO2 nanostructures with efficient solar-driven water splitting. ACS Sustainable Chem. Eng. 5, 8982 (2017).
17.Wan, N., Xing, Z., Kuang, J., Li, Z., Yin, J., Zhu, Q., and Zhou, W.: Oxygen vacancy-mediated efficient electron-hole separation for CNS-tridoped single crystal black TiO2(B) nanorods as visible-light-driven photocatalysts. Appl. Surf. Sci. 457, 287 (2018).
18.Liu, X., Gao, S., Xu, H., Lou, Z., Wang, W., Huang, B., and Dai, Y.: Green synthetic approach for Ti3+ self-doped TiO(2−x) nanoparticles with efficient visible light photocatalytic activity. Nanoscale 5, 1870 (2013).
19.Panomsuwan, G., Watthanaphanit, A., Ishizaki, T., and Saito, N.: Water-plasma-assisted synthesis of black titania spheres with efficient visible-light photocatalytic activity. Phys. Chem. Chem. Phys. 17, 13794 (2015).
20.Pei, Z., Ding, L., Lin, H., Weng, S., Zheng, Z., Hou, Y., and Liu, P.: Facile synthesis of defect-mediated TiO2−x with enhanced visible light photocatalytic activity. J. Mater. Chem. A 1, 10099 (2013).
21.Fan, C., Chen, C., Wang, J., Fu, X., Ren, Z., Qian, G., and Wang, Z.: Black hydroxylated titanium dioxide prepared via ultrasonication with enhanced photocatalytic activity. Sci. Rep. 5, 11712 (2015).
22.Szot, K., Rogala, M., Speier, W., Klusek, Z., Besmehn, A., and Waser, R.: TiO2—A prototypical memristive material. Nanotechnology 22, 254001 (2011).
23.Zhang, K. and Park, J.H.: Surface localization of defects in black TiO2: Enhancing photoactivity or reactivity. J. Phys. Chem. Lett. 8, 199 (2017).
24.Tan, H.Q., Zhao, Z., Niu, M., Mao, C.Y., Cao, D.P., Cheng, D.J., Feng, P.Y., and Sun, Z.C.: A facile and versatile method for preparation of colored TiO2 with enhanced solar-driven photocatalytic activity. Nanoscale 6, 10216 (2014).
25.Cromer, D.T. and Herrington, K.: The structures of anatase and rutile. J. Am. Chem. Soc. 77, 4708 (1955).
26.Marchand, R., Brohan, L., and Tournoux, M.: TiO2(B) a new form of titanium dioxide and the potassium octatitanate K2Ti8O17. Mater. Res. Bull. 15, 1129 (1980).
27.Latroche, M., Brohan, L., Marchand, R., and Tournoux, M.: New hollandite oxides: TiO2(H) and K0.06TiO2. J. Solid State Chem. 81, 78 (1989).
28.Akimoto, J., Gotoh, Y., Oosawa, Y., Nonose, N., Kumagai, T., and Aoki, K.: Topotactic oxidation of ramsdellite-type Li0.5TiO2, a new polymorph of titanium dioxide: TiO2(R). J. Solid State Chem. 113, 27 (1994).
29.Simons, P.Y. and Dachille, F.: The structure of TiO2II, a high-pressure phase of TiO2. Acta Crystallogr. 23, 334 (1967).
30.Sato, H., Endo, S., Sugiyama, M., Kikegawa, T., Shimomura, O., and Kusaba, K.: Baddeleyite-type high-pressure phase of TiO2. Science 251, 786 (1991).
31.Mattesini, M., de Almeida, J.S., Dubrovinsky, L., Dubrovinskaia, N., Johansson, B., and Ahuja, R.: High-pressure and high-temperature synthesis of the cubic TiO2 polymorph. Phys. Rev. B 70, 212101 (2004).
32.Dubrovinskaia, N.A., Dubrovinsky, L.S., Ahuja, R., Prokopenko, V.B., Dmitriev, V., Weber, H.P., Osorio-Guillen, J.M., and Johansson, B.: Experimental and theoretical identification of a new high-pressure TiO2 polymorph. Phys. Rev. Lett. 87, 275501 (2001).
33.Dubrovinsky, L.S., Dubrovinskaia, N.A., Swamy, V., Muscat, J., Harrison, N.M., Ahuja, R., Holm, B., and Johansson, B.: Materials science: The hardest known oxide. Nature 410, 653 (2001).
34.Stoyanov, E., Langenhorst, F., and Steinle-Neumann, G.: The effect of valence state and site geometry on Ti L3,2 and O K electron energy-loss spectra of TixOy phases. Am. Mineral. 92, 577 (2007).
35.Tian, M., Mahjouri-Samani, M., Eres, G., Sachan, R., Yoon, M., Chisholm, M.F., Wang, K., Puretzky, A.A., Rouleau, C.M., Geohegan, D.B., and Duscher, G.: Structure and formation mechanism of black TiO2 nanoparticles. ACS Nano 9, 10482 (2015).
36.Zhou, W., Li, W., Wang, J.Q., Qu, Y., Yang, Y., Xie, Y., Zhang, K., Wang, L., Fu, H., and Zhao, D.: Ordered mesoporous black TiO2 as highly efficient hydrogen evolution photocatalyst. J. Am. Chem. Soc. 136, 9280 (2014).
37.Wagner, C.D., Briggs, W.M., Davis, L.E., Moulder, J.F., and Muilenberg, G.E.: Handbook of X-ray Photoelectron Spectroscopy (Perkin-Elmer Corp., Eden Prairie, Minnesota, 1979); p. 298.
38.McCafferty, E. and Wightman, J.P.: Determination of the concentration of surface hydroxyl groups on metal oxide films by a quantitative XPS method. Surf. Interface Anal. 26, 549 (1998).
39.Li, F., Han, T., Wang, H., Zheng, X., Wan, J., and Ni, B.: Morphology evolution and visible light driven photocatalysis study of Ti3+ self-doped TiO2−x nanocrystals. J. Mater. Res. 32, 1563 (2017).
40.Topsoe, N.Y., Topsoe, H., and Dumesic, J.A.: Vanadia/titania catalysts for selective catalytic reduction (SCR) of nitric-oxide by ammonia. J. Catal. 151, 226 (1995).
41.Liu, X., Hou, B., Wang, G., Cui, Z., Zhu, X., and Wang, X.: Black titania/graphene oxide nanocomposite films with excellent photothermal property for solar steam generation. J. Mater. Res. 33, 674 (2018).
42.Ohsaka, T., Izumi, F., and Fujiki, Y.: Raman spectrum of anatase, TiO2. J. Raman Spectrosc. 7, 321 (1978).
43.Parker, J.C. and Siegel, R.W.: Calibration of the Raman spectrum to the oxygen stoichiometry of nanophase TiO2. Appl. Phys. Lett. 57, 943 (1990).
44.Li Bassi, A., Cattaneo, D., Russo, V., and Bottani, C.E.: Raman spectroscopy characterization of titania nanoparticles produced by flame pyrolysis: The influence of size and stoichiometry. J. Appl. Phys. 98, 074305 (2005).
45.Wang, Z. and Saxena, S.K.: Raman spectroscopic study on pressure-induced amorphization in nanocrystalline anatase (TiO2). Solid State Commun. 118, 75 (2001).
46.Zhu, K-R., Zhang, M-S., Chen, Q., and Yin, Z.: Size and phonon-confinement effects on low-frequency Raman mode of anatase TiO2 nanocrystal. Phys. Lett. A 340, 220 (2005).
47.Li, L., Yan, J., Wang, T., Zhao, Z.J., Zhang, J., Gong, J., and Guan, N.: Sub-10 nm rutile titanium dioxide nanoparticles for efficient visible-light-driven photocatalytic hydrogen production. Nat. Commun. 6, 5881 (2015).
48.Sang, L., Zhao, Y., and Burda, C.: TiO2 nanoparticles as functional building blocks. Chem. Rev. 114, 9283 (2014).
49.Satoh, N., Nakashima, T., Kamikura, K., and Yamamoto, K.: Quantum size effect in TiO2 nanoparticles prepared by finely controlled metal assembly on dendrimer templates. Nat. Nanotechnol. 3, 106 (2008).
50.Monticone, S., Tufeu, R., Kanaev, A.V., Scolan, E., and Sanchez, C.: Quantum size effect in TiO2 nanoparticles: Does it exist? Appl. Surf. Sci. 162–163, 565 (2000).
51.Scolan, E. and Sanchez, C.: Synthesis and characterization of surface-protected nanocrystalline titania particles. Chem. Mater. 10, 3217 (1998).
52.Mills, A. and Le Hunte, S.: An overview of semiconductor photocatalysis. J. Photochem. Photobiol., A 108, 1 (1997).
53.Anpo, M., Shima, T., Kodama, S., and Kubokawa, Y.: Photocatalytic hydrogenation of propyne with water on small-particle titania: Size quantization effects and reaction intermediates. J. Phys. Chem. 91, 4305 (1987).
54.Kormann, C., Bahnemann, D.W., and Hoffmann, M.R.: Preparation and characterization of quantum-size titanium dioxide. J. Phys. Chem. 92, 5196 (1988).
55.Lin, H., Huang, C., Li, W., Ni, C., Shah, S., and Tseng, Y.: Size dependency of nanocrystalline TiO2 on its optical property and photocatalytic reactivity exemplified by 2-chlorophenol. Appl. Catal., B 68, 1 (2006).
56.Ullattil, S.G. and Periyat, P.: Green microwave switching from oxygen rich yellow anatase to oxygen vacancy rich black anatase TiO2 solar photocatalyst using Mn(II) as ‘anatase phase purifier’. Nanoscale 7, 19184 (2015).
57.Xia, T., Zhang, C., Oyler, N.A., and Chen, X.: Hydrogenated TiO2 nanocrystals: A novel microwave absorbing material. Adv. Mater. 25, 6905 (2013).
58.Xia, T., Zhang, C., Oyler, N.A., and Chen, X.: Enhancing microwave absorption of TiO2 nanocrystals via hydrogenation. J. Mater. Res. 29, 2198 (2014).
59.Tian, M., Mahjouri-Samani, M., Wang, K., Puretzky, A.A., Geohegan, D.B., Tennyson, W.D., Cross, N., Rouleau, C.M., Zawodzinski, T.A. Jr., Duscher, G., and Eres, G.: Black anatase formation by annealing of amorphous nanoparticles and the role of the Ti2O3 shell in self-organized crystallization by particle attachment. ACS Appl. Mater. Interfaces 9, 22018 (2017).
60.Lu, Z., Yip, C-T., Wang, L., Huang, H., and Zhou, L.: Hydrogenated TiO2 nanotube arrays as high-rate anodes for lithium-ion microbatteries. ChemPlusChem 77, 991 (2012).
61.Chen, X., Liu, L., Liu, Z., Marcus, M.A., Wang, W.C., Oyler, N.A., Grass, M.E., Mao, B., Glans, P.A., Yu, P.Y., Guo, J., and Mao, S.S.: Properties of disorder-engineered black titanium dioxide nanoparticles through hydrogenation. Sci. Rep. 3, 1510 (2013).
62.Myung, S-T., Kikuchi, M., Yoon, C.S., Yashiro, H., Kim, S-J., Sun, Y-K., and Scrosati, B.: Black anatase titania enabling ultra high cycling rates for rechargeable lithium batteries. Energy Environ. Sci. 6, 2609 (2013).
63.Shin, J-Y., Joo, J.H., Samuelis, D., and Maier, J.: Oxygen-deficient TiO2−δ nanoparticles via hydrogen reduction for high rate capability lithium batteries. Chem. Mater. 24, 543 (2012).
64.Xia, T. and Chen, X.: Revealing the structural properties of hydrogenated black TiO2 nanocrystals. J. Mater. Chem. A 1, 2983 (2013).
65.Naldoni, A., Allieta, M., Santangelo, S., Marelli, M., Fabbri, F., Cappelli, S., Bianchi, C.L., Psaro, R., and Dal Santo, V.: Effect of nature and location of defects on band gap narrowing in black TiO2 nanoparticles. J. Am. Chem. Soc. 134, 7600 (2012).
66.Tominaka, S.: Topotactic reduction yielding black titanium oxide nanostructures as metallic electronic conductors. Inorg. Chem. 51, 10136 (2012).
67.Swamy, V., Menzies, D., Muddle, B.C., Kuznetsov, A., Dubrovinsky, L.S., Dai, Q., and Dmitriev, V.: Nonlinear size dependence of anatase TiO2 lattice parameters. Appl. Phys. Lett. 88, 243103 (2006).
68.Li, G., Boerio-Goates, J., Woodfield, B.F., and Li, L.: Evidence of linear lattice expansion and covalency enhancement in rutile TiO2 nanocrystals. Appl. Phys. Lett. 85, 2059 (2004).
69.Zhang, H. and Banfield, J.F.: Structural characteristics and mechanical and thermodynamic properties of nanocrystalline TiO2. Chem. Rev. 114, 9613 (2014).
70.Santara, B., Giri, P.K., Imakita, K., and Fujii, M.: Microscopic origin of lattice contraction and expansion in undoped rutile TiO2 nanostructures. J. Phys. D: Appl. Phys. 47, 215302 (2014).
71.Smith, S.J., Stevens, R., Liu, S., Li, G., Navrotsky, A., Boerio-Goates, J., and Woodfield, B.F.: Heat capacities and thermodynamic functions of TiO2 anatase and rutile: Analysis of phase stability. Am. Mineral. 94, 236 (2009).
72.Mitsuhashi, T. and Kleppa, O.J.: Transformation enthalpies of the TiO2 polymorphs. J. Am. Ceram. Soc. 62, 356 (1979).
73.Jamieson, J.C., Olinger, B., Dachille, F., Simons, P., and Roy, R.: Pressure-temperature studies of anatase, brookite rutile and TiO2(II)—A discussion. Am. Mineral. 54, 1477 (1969).
74.Muscat, J., Swamy, V., and Harrison, N.M.: First-principles calculations of the phase stability of TiO2. Phys. Rev. B 65, 224112 (2002).
75.Luo, Y., Benali, A., Shulenburger, L., Krogel, J.T., Heinonen, O., and Kent, P.R.: Phase stability of TiO2 polymorphs from diffusion quantum Monte Carlo. New J. Phys. 18, 113049 (2016).
76.Zhang, H. and Banfield, J.F.: Thermodynamic analysis of phase stability of nanocrystalline titania. J. Mater. Chem. 8, 2073 (1998).
77.Barnard, A.S. and Curtiss, L.A.: Prediction of TiO2 nanoparticle phase and shape transitions controlled by surface chemistry. Nano Lett. 5, 1261 (2005).
78.Shannon, R.D. and Pask, J.A.: Kinetics of the anatase-rutile transformation. J. Am. Ceram. Soc. 48, 391 (1965).
79.Vargas, S., Arroyo, R., Haro, E., and Rodríguez, R.: Effects of cationic dopants on the phase transition temperature of titania prepared by the sol–gel method. J. Mater. Res. 14, 3932 (2011).
80.Riyas, S., Krishnan, G., and Mohan Das, P.N.: Anatase–rutile transformation in doped titania under argon and hydrogen atmospheres. Adv. Appl. Ceram. 106, 255 (2013).
81.Batzill, M., Morales, E.H., and Diebold, U.: Influence of nitrogen doping on the defect formation and surface properties of TiO2 rutile and anatase. Phys. Rev. Lett. 96, 026103 (2006).
82.David, J., Trolliard, G., and Maître, A.: Transmission electron microscopy study of the reaction mechanisms involved in the carbothermal reduction of anatase. Acta Mater. 61, 5414 (2013).
83.Liborio, L. and Harrison, N.: Thermodynamics of oxygen defective Magnéli phases in rutile: A first-principles study. Phys. Rev. B 77, 104104 (2008).
84.Le Page, Y. and Strobel, P.: Structural chemistry of the Magnéli phases TinO2n−1, 4 ≤ n ≤ 9. J. Solid State Chem. 44, 273 (1982).
85.Mahjouri-Samani, M., Tian, M., Puretzky, A.A., Chi, M., Wang, K., Duscher, G., Rouleau, C.M., Eres, G., Yoon, M., Lasseter, J., Xiao, K., and Geohegan, D.B.: Nonequilibrium synthesis of TiO2 nanoparticle “building blocks” for crystal growth by sequential attachment in pulsed laser deposition. Nano Lett. 17, 4624 (2017).
86.Hanaor, D.A.H. and Sorrell, C.C.: Review of the anatase to rutile phase transformation. J. Mater. Sci. 46, 855 (2010).
87.Zhao, Z., Tan, H., Zhao, H., Lv, Y., Zhou, L.J., Song, Y., and Sun, Z.: Reduced TiO2 rutile nanorods with well-defined facets and their visible-light photocatalytic activity. Chem. Commun. 50, 2755 (2014).
88.Yin, H., Lin, T., Yang, C., Wang, Z., Zhu, G., Xu, T., Xie, X., Huang, F., and Jiang, M.: Gray TiO2 nanowires synthesized by aluminum-mediated reduction and their excellent photocatalytic activity for water cleaning. Chem.–Eur. J. 19, 13313 (2013).
89.Wang, G., Wang, H., Ling, Y., Tang, Y., Yang, X., Fitzmorris, R.C., Wang, C., Zhang, J.Z., and Li, Y.: Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting. Nano Lett. 11, 3026 (2011).
90.Zhang, S., Zhang, S., Peng, B., Wang, H., Yu, H., Wang, H., and Peng, F.: High performance hydrogenated TiO2 nanorod arrays as a photoelectrochemical sensor for organic compounds under visible light. Electrochem. Commun. 40, 24 (2014).
91.Di Paola, A., Bellardita, M., and Palmisano, L.: Brookite, the least known TiO2 photocatalyst. Catalysts 3, 36 (2013).
92.Zhu, G., Lin, T., , X., Zhao, W., Yang, C., Wang, Z., Yin, H., Liu, Z., Huang, F., and Lin, J.: Black brookite titania with high solar absorption and excellent photocatalytic performance. J. Mater. Chem. A 1, 9650 (2013).
93.Li, J-G. and Ishigaki, T.: Brookite → rutile phase transformation of TiO2 studied with monodispersed particles. Acta Mater. 52, 5143 (2004).
94.Rao, C.N.R., Yoganarasimhan, S.R., and Faeth, P.A.: Studies on the brookite-rutile transformation. Trans. Faraday Soc. 57, 504 (1961).
95.Huberty, J. and Xu, H.: Kinetics study on phase transformation from titania polymorph brookite to rutile. J. Solid State Chem. 181, 508 (2008).
96.Xin, X., Xu, T., Wang, L., and Wang, C.: Ti3+-self doped brookite TiO2 single-crystalline nanosheets with high solar absorption and excellent photocatalytic CO2 reduction. Sci. Rep. 6, 23684 (2016).
97.Kumar, S.G. and Rao, K.S.: Polymorphic phase transition among the titania crystal structures using a solution-based approach: From precursor chemistry to nucleation process. Nanoscale 6, 11574 (2014).
98.Li, L., Shi, K., Tu, R., Qian, Q., Li, D., Yang, Z., and Lu, X.: Black TiO2(B)/anatase bicrystalline TiO2–x nanofibers with enhanced photocatalytic performance. Chin. J. Catal. 36, 1943 (2015).
99.Cai, J., Wang, Y., Zhu, Y., Wu, M., Zhang, H., Li, X., Jiang, Z., and Meng, M.: In situ formation of disorder-engineered TiO2(B)-Anatase heterophase junction for enhanced photocatalytic hydrogen evolution. ACS Appl. Mater. Interfaces 7, 24987 (2015).
100.Zheng, P., Hao, R., Zhao, J., Jia, S., Cao, B., and Zhu, Z.: Kinetic reconstruction of TiO2 surfaces as visible-light-active crystalline phases with high photocatalytic performance. J. Mater. Chem. A 2, 4907 (2014).
101.Li, J., Liu, C-H., Li, X., Wang, Z-Q., Shao, Y-C., Wang, S-D., Sun, X-L., Pong, W-F., Guo, J-H., and Sham, T-K.: Unraveling the origin of visible light capture by core–shell TiO2 nanotubes. Chem. Mater. 28, 4467 (2016).
102.Lu, H., Zhao, B., Pan, R., Yao, J., Qiu, J., Luo, L., and Liu, Y.: Safe and facile hydrogenation of commercial Degussa P25 at room temperature with enhanced photocatalytic activity. RSC Adv. 4, 1128 (2014).
103.Ishida, Y., Doshin, W., Tsukamoto, H., and Yonezawa, T.: Black TiO2 nanoparticles by a microwave-induced plasma over titanium complex aqueous solution. Chem. Lett. 44, 1327 (2015).
104.Fujiwara, K., Deligiannakis, Y., Skoutelis, C.G., and Pratsinis, S.E.: Visible-light active black TiO2–Ag/TiOx particles. Appl. Catal., B 154–155, 9 (2014).
105.Khan, M.M., Ansari, S.A., Pradhan, D., Ansari, M.O., Han, D.H., Lee, J., and Cho, M.H.: Band gap engineered TiO2 nanoparticles for visible light induced photoelectrochemical and photocatalytic studies. J. Mater. Chem. A 2, 637 (2014).
106.Wang, Z., Yang, C.Y., Lin, T.Q., Yin, H., Chen, P., Wan, D.Y., Xu, F.F., Huang, F.Q., Lin, J.H., Xie, X.M., and Jiang, M.H.: Visible-light photocatalytic, solar thermal and photoelectrochemical properties of aluminium-reduced black titania. Energy Environ. Sci. 6, 3007 (2013).
107.Zhu, G., Yin, H., Yang, C., Cui, H., Wang, Z., Xu, J., Lin, T., and Huang, F.: Black titania for superior photocatalytic hydrogen production and photoelectrochemical water splitting. ChemCatChem 7, 2614 (2015).
108.Sinhamahapatra, A., Jeon, J.P., and Yu, J.S.: A new approach to prepare highly active and stable black titania for visible light-assisted hydrogen production. Energy Environ. Sci. 8, 3539 (2015).
109.Ramchiary, A. and Samdarshi, S.K.: High visible light activity of hydrogenated structure-engineered mixed phase titania photocatalyst. Chem. Phys. Lett. 597, 63 (2014).
110.Wang, H., Lin, T., Zhu, G., Yin, H., , X., Li, Y., and Huang, F.: Colored titania nanocrystals and excellent photocatalysis for water cleaning. Catal. Commun. 60, 55 (2015).
111.Yan, Y., Hao, B., Wang, D., Chen, G., Markweg, E., Albrecht, A., and Schaaf, P.: Understanding the fast lithium storage performance of hydrogenated TiO2 nanoparticles. J. Mater. Chem. A 1, 14507 (2013).
112.Sun, C., Jia, Y., Yang, X-H., Yang, H-G., Yao, X., Lu, G.Q., Selloni, A., and Smith, S.C.: Hydrogen incorporation and storage in well-defined nanocrystals of anatase titanium dioxide. J. Phys. Chem. C 115, 25590 (2011).
113.Jiang, X., Zhang, Y., Jiang, J., Rong, Y., Wang, Y., Wu, Y., and Pan, C.: Characterization of oxygen vacancy associates within hydrogenated TiO2: A positron annihilation study. J. Phys. Chem. C 116, 22619 (2012).
114.Li, G., Lian, Z., Li, X., Xu, Y., Wang, W., Zhang, D., Tian, F., and Li, H.: Ionothermal synthesis of black Ti3+-doped single-crystal TiO2 as an active photocatalyst for pollutant degradation and H2 generation. J. Mater. Chem. A 3, 3748 (2015).
115.Zhang, K., Wang, L., Kim, J.K., Ma, M., Veerappan, G., Lee, C-L., Kong, K-J., Lee, H., and Park, J.H.: An order/disorder/water junction system for highly efficient co-catalyst-free photocatalytic hydrogen generation. Energy Environ. Sci. 9, 499 (2016).
116.Hoang, S., Guo, S., Hahn, N.T., Bard, A.J., and Mullins, C.B.: Visible light driven photoelectrochemical water oxidation on nitrogen-modified TiO2 nanowires. Nano Lett. 12, 26 (2012).
117.Lu, X., Wang, G., Zhai, T., Yu, M., Gan, J., Tong, Y., and Li, Y.: Hydrogenated TiO2 nanotube arrays for supercapacitors. Nano Lett. 12, 1690 (2012).
118.Dong, J., Han, J., Liu, Y., Nakajima, A., Matsushita, S., Wei, S., and Gao, W.: Defective black TiO2 synthesized via anodization for visible-light photocatalysis. ACS Appl. Mater. Interfaces 6, 1385 (2014).
119.Liu, N., Haublein, V., Zhou, X., Venkatesan, U., Hartmann, M., Mackovic, M., Nakajima, T., Spiecker, E., Osvet, A., Frey, L., and Schmuki, P.: “Black” TiO2 nanotubes formed by high-energy proton implantation show noble-metal-co-catalyst free photocatalytic H2-evolution. Nano Lett. 15, 6815 (2015).
120.Li, G., Zhang, Z., Peng, H., and Chen, K.: Mesoporous hydrogenated TiO2 microspheres for high rate capability lithium ion batteries. RSC Adv. 3, 11507 (2013).
121.Qiu, B., Xing, M., and Zhang, J.: Mesoporous TiO2 nanocrystals grown in situ on graphene aerogels for high photocatalysis and lithium-ion batteries. J. Am. Chem. Soc. 136, 5852 (2014).
122.Chen, J., Song, W.X., Hou, H.S., Zhang, Y., Jing, M.J., Jia, X.N., and Ji, X.B.: Ti3+ self-doped dark rutile TiO2 ultrafine nanorods with durable high-rate capability for lithium-ion batteries. Adv. Funct. Mater. 25, 6793 (2015).
123.Qiu, J., Li, S., Gray, E., Liu, H., Gu, Q-F., Sun, C., Lai, C., Zhao, H., and Zhang, S.: Hydrogenation synthesis of blue TiO2 for high-performance lithium-ion batteries. J. Phys. Chem. C 118, 8824 (2014).
124.Lepcha, A., Maccato, C., Mettenbörger, A., Andreu, T., Mayrhofer, L., Walter, M., Olthof, S., Ruoko, T.P., Klein, A., Moseler, M., Meerholz, K., Morante, J.R., Barreca, D., and Mathur, S.: Electrospun black titania nanofibers: Influence of hydrogen plasma-induced disorder on the electronic structure and photoelectrochemical performance. J. Phys. Chem. C 119, 18835 (2015).
125.Shen, L., Xing, Z., Zou, J., Li, Z., Wu, X., Zhang, Y., Zhu, Q., Yang, S., and Zhou, W.: Black TiO2 nanobelts/g-C3N4 nanosheets laminated heterojunctions with efficient visible-light-driven photocatalytic performance. Sci. Rep. 7, 41978 (2017).
126.Jing, H., Cheng, Q., Weller, J.M., Chu, X.S., Wang, Q.H., and Chan, C.K.: Synthesis of TiO2 nanosheet photocatalysts from exfoliation of TiS2 and hydrothermal treatment. J. Mater. Res. 1, 3540 (2018).
127.Zhang, H., Chen, B., Banfield, J.F., and Waychunas, G.A.: Atomic structure of nanometer-sized amorphous TiO2. Phys. Rev. B 78, 214106 (2008).
128.Prasai, B., Cai, B., Underwood, M.K., Lewis, J.P., and Drabold, D.A.: Properties of amorphous and crystalline titanium dioxide from first principles. J. Mater. Sci. 47, 7515 (2012).
129.Van Hoang, V.: Structural properties of simulated liquid and amorphous TiO2. Phys. Status Solidi B 244, 1280 (2007).
130.Rondinelli, J.M., May, S.J., and Freeland, J.W.: Control of octahedral connectivity in perovskite oxide heterostructures: An emerging route to multifunctional materials discovery. MRS Bull. 37, 261 (2012).
131.Hirata, A., Guan, P., Fujita, T., Hirotsu, Y., Inoue, A., Yavari, A.R., Sakurai, T., and Chen, M.: Direct observation of local atomic order in a metallic glass. Nat. Mater. 10, 28 (2011).
132.Borodin, V.A.: Local atomic arrangements in polytetrahedral materials. Philos. Mag. A 79, 1887 (1999).
133.Finney, J.L.: Modelling the structures of amorphous metals and alloys. Nature 266, 309 (1977).
134.Onishi, H. and Iwasawa, Y.: Reconstruction of TiO2(110) surface: STM study with atomic-scale resolution. Surf. Sci. 313, L783 (1994).
135.Onishi, H. and Iwasawa, Y.: Dynamic visualization of a metal-oxide-surface/gas-phase reaction: Time-resolved observation by scanning tunneling microscopy at 800 K. Phys. Rev. Lett. 76, 791 (1996).
136.Lu, X., Chen, A., Luo, Y., Lu, P., Dai, Y., Enriquez, E., Dowden, P., Xu, H., Kotula, P.G., Azad, A.K., Yarotski, D.A., Prasankumar, R.P., Taylor, A.J., Thompson, J.D., and Jia, Q.: Conducting interface in oxide homojunction: Understanding of superior properties in black TiO2. Nano Lett. 16, 5751 (2016).

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed