Hostname: page-component-848d4c4894-pjpqr Total loading time: 0 Render date: 2024-06-21T09:46:21.142Z Has data issue: false hasContentIssue false

Reactive wetting of polycrystalline TiC by molten Zr55Cu30Al10Ni5 metallic glass alloy

Published online by Cambridge University Press:  31 January 2011

Ping Shen*
Affiliation:
Key Laboratory of Automobile Materials of Ministry of Education, Department of Materials Science and Engineering, Jilin University, Changchun 130025, People's Republic of China
Qichuan Jiang
Affiliation:
Key Laboratory of Automobile Materials of Ministry of Education, Department of Materials Science and Engineering, Jilin University, Changchun 130025, People's Republic of China
Kiyoshi Nogi
Affiliation:
Joining and Welding Research Institute, Osaka University, Ibaraki, Osaka 567-0047, Japan
*
a) Address all correspondence to this author. e-mail: shenping@jlu.edu.cn
Get access

Abstract

The isotherm wetting and spreading behaviors of polycrystalline TiC by molten Zr55Cu30Al10Ni5 alloy were investigated at 1133 to 1253 K in a vacuum by using a modified sessile drop method. The system displays good wettability with the initial and final stable contact angles of 44 to 50° and 10 to 14°, respectively, mildly depending on the temperature. The spreading kinetics follows well defined exponential functions and could be described by a molecular dynamic model. On the other hand, a ZrC reaction layer was formed at the interface. The wetting was primarily promoted by the Zr adsorption at the triple junction and then by the formation of the reaction layer.

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Wang, W.H., Dong, C., and Shek, C.H.: Bulk metallic glasses. Mater. Sci. Eng., R 44, 45 (2004).Google Scholar
2Sun, Y.F., Shek, C.H., Guan, S.K., Wei, B.C., and Geng, J.Y.: Formation, thermal stability and deformation behavior of graphite-flakes reinforced Cu-based bulk metallic glass matrix composites. Mater. Sci. Eng., A 435–436, 132 (2006).CrossRefGoogle Scholar
3Choi-Yim, H., Busch, R., Koster, U., and Johnson, W.L.: Synthesis and characterization of particulate reinforced Zr57Nb5Al10 Cu15.4Ni12.6 bulk metallic glass composites. Acta Mater. 47, 2455 (1999).CrossRefGoogle Scholar
4Schroers, J., Samwer, K., Szuecs, F., and Johnson, W.L.: Characterization of the interface between the bulk glass forming alloy Zr41Ti14Cu12Ni10Be23 with pure metals and ceramics. J. Mater. Res. 15, 1617 (2000).CrossRefGoogle Scholar
5Xu, Q.G., Zhang, H.F., and Hu, Z.Q.: Wetting behavior of Zr55Cu30Al10Ni5 melt on alumina. Trans. Nonferrous Met. Soc. China 15, 45 (2005).Google Scholar
6Xu, Q.G., Wu, B.L., Zhang, H.F., and Hu, Z.Q.: Wettability of molten Zr55Cu30Al10Ni5 on alumina and zirconia. Rare Met. 26, 213 (2007).Google Scholar
7Ma, G.F., Zhang, H.F., Li, H., and Hu, Z.Q.: Wetting behavior of CuZr-based BMGs/alumina system. J. Alloys Compd. 462, 343 (2008).CrossRefGoogle Scholar
8Shen, P., Zheng, X.H., Lin, Q.L., Zhang, D., and Jiang, Q.C.: Wetting of polycrystalline a-Al2O3 by molten Zr55Cu30Al10Ni5 alloy. Metall. Mater. Trans. A 40, 444 (2009).CrossRefGoogle Scholar
9Fu, H.M., Zhang, H.F., Wang, H., Zhang, Q.S., and Hu, Z.Q.: Synthesis and mechanical properties of Cu-based bulk metallic glass composites containing in situ TiC particles. Scr. Mater. 52, 669 (2005).CrossRefGoogle Scholar
10Wu, X.F., Zhang, H.F., Qiu, K.Q., Yang, H.C., and Hu, Z.Q.: Synthesis and mechanical properties of in situ ZrC reinforced bulk Zr amorphous matrix composites. Acta Metall. Sinica 39, 555 (2003).Google Scholar
11Qiu, F., Liu, T., Jiang, Z.H., Shen, P., and Jiang, Q.C.: Formation of a multiphase gradient structure in a Zr-Cu-Ni-Al-O alloy. Adv. Eng. Mater. 10, 384 (2008).CrossRefGoogle Scholar
12Storms, E.K.: The Refractory Carbides (Academic Press Inc., New York, 1967), p. 8.Google Scholar
13Shen, P., Fujii, H., Matsumoto, T., and Nogi, K.: The influence of surface structure on wetting of a-Al2O3 by aluminum in a reduced atmosphere. Acta Mater. 51, 4897 (2003).CrossRefGoogle Scholar
14Shen, P., Fujii, H., Matsumoto, T., and Nogi, K.: Critical factors affecting the wettability of a-alumina by molten aluminum. J. Am. Ceram. Soc. 87, 2151 (2004).CrossRefGoogle Scholar
15Barin, I.: Thermochemical Data of Pure Substances, 3rd ed. (Wiley-VCH Verlag GmbH, Weinheim, Germany, 1995), pp. 1674, 1860.CrossRefGoogle Scholar
16Nogi, K.: Wetting phenomena at high temperature (Part III). Trans. JWRI 22, 183 (1993).Google Scholar
17Xing, L.Q. and Ochin, P.: Investigation of the effects of Al and Ti on the glass forming ability of Zr-Cu-Al and Zr-Ti-Al-Cu-Ni alloys through their solidification characteristics. Acta Mater. 45, 3765 (1997).CrossRefGoogle Scholar
18Kumar, G. and Prabhu, K.N.: Review of non-reactive and reactive wetting of liquids on surfaces. Adv. Colloid Interface Sci. 133, 61 (2007).CrossRefGoogle ScholarPubMed
19Mortensen, A., Drevet, B., and Eustathopoulos, N.: Kinetics of diffusion-limited spreading of sessile drops in reactive wetting. Scr. Mater. 36, 645 (1997).CrossRefGoogle Scholar
20Eustathopoulos, N.: Dynamics of wetting in reactive metal/ceramic systems. Acta Mater. 46, 2319 (1998).Google Scholar
21Cox, R.G.: The dynamics of the spreading of liquids on a solid surface. Part 1. Viscous flow. J. Fluid Mech. 168, 169 (1986).CrossRefGoogle Scholar
22Kistler, S.F.: Hydrodynamics of wetting, in Wettability, edited by Berg, J.C. (Marcel Dekker, Inc., NY, 1993), pp. 311–429.Google Scholar
23Fan, G.J., J.Li, J.Z., Rhim, W.K., Qiao, D.C., Choo, H., Liaw, P.K., and Johnson, W.L.: Thermophysical properties of a Cu46Zr42 Al7Y5 bulk metallic glass-forming liquid. Appl. Phys. Lett. 88, 221909 (2006).CrossRefGoogle Scholar
24Blake, T.D.: Dynamic contact angles and wetting kinetics, in Wettability, edited by Berg, J.C. (Marcel Dekker, Inc., NY, 1993), pp. 251–309.Google Scholar
25Iida, T. and Guthrie, R.I.L.: The Physical Properties of Liquid Metals (Oxford Univ. Press Inc., New York, 1993. Translated by A.P., Xian and L.W., Wang into Chinese, Science Press, Beijing, China, 2006), p. 200.Google Scholar
26Jiang, T.S., Oh, S.G., and Slattery, J.C.: Correlation for dynamic contact angle. J. Colloid Interface Sci. 69, 74 (1979).CrossRefGoogle Scholar
27Bracke, M., Voeght, F. De, and Joos, P.: The kinetics of wetting: The dynamic contact angle. Prog. Colloid Polym. Sci. 79, 142 (1989).CrossRefGoogle Scholar
28Aksay, I.A., Hoge, C.E., and Pask, J.A.: Wetting under chemical equilibrium and nonequilibrium conditions. J. Phys. Chem. 78, 1178 (1974).CrossRefGoogle Scholar
29Eustathopoulos, N.: Progress in understanding and modeling reactive wetting of metals on ceramics. Curr. Opin. Solid State Mater. Sci. 9, 152 (2005).CrossRefGoogle Scholar
30Dezellus, O., Hodaj, F., and Eustathopoulos, N.: Chemical reactionlimited spreading: The triple line velocity versus contact angle relation. Acta Mater. 50, 4741 (2002).CrossRefGoogle Scholar
31Saiz, E., Cannon, R., and Tomsia, A.P.: Reactive spreading: Adsorption, ridging and compound formation. Acta Mater. 48, 4449 (2000).CrossRefGoogle Scholar
32Voytovych, R., Ljungberg, L.Y., and Eustathopoulos, N.: The role of adsorption and reaction in wetting in the CuAg–Ti/alumina system. Scr. Mater. 51, 431 (2004).CrossRefGoogle Scholar
33Gremillard, L., Saiz, E., Radmilovic, V.R., and Tomsia, A.P.: Role of titanium on the reactive spreading of lead-free solders on alumina. J. Mater. Res. 21, 3222 (2006).CrossRefGoogle Scholar
34Saiz, E. and Tomsia, A.P.: Kinetics of high-temperature spreading. Curr. Opin. Solid State Mater. Sci. 9, 167 (2005).CrossRefGoogle Scholar
35Liu, T., Shen, P., Qiu, F., Lin, Q.L., Jin, S.B., and Jiang, Q.C.: Microstructures and mechanical properties of ZrC reinforced (Zr-Ti)-Al-Ni-Cu glassy composites by an in situ reaction. Adv. Eng. Mater. (in press, DOI: 10.1002/adem.200800359).CrossRefGoogle Scholar