Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-27T00:57:06.773Z Has data issue: false hasContentIssue false

Reactive coevaporation of YBaCuO superconducting films

Published online by Cambridge University Press:  31 January 2011

V. Matijasevic
Affiliation:
Department of Applied Physics, Stanford University, Stanford, California 94305
P. Rosenthal
Affiliation:
Department of Applied Physics, Stanford University, Stanford, California 94305
K. Shinohara
Affiliation:
Department of Applied Physics, Stanford University, Stanford, California 94305
A.F. Marshall
Affiliation:
Department of Applied Physics, Stanford University, Stanford, California 94305
R.H. Hammond
Affiliation:
Department of Applied Physics, Stanford University, Stanford, California 94305
M.R. Beasley
Affiliation:
Department of Applied Physics, Stanford University, Stanford, California 94305
Get access

Abstract

Growth conditions for YBaCuO thin films are investigated. Films have been made by reactive e-beam coevaporation using three metal sources. In the best cases, as-made films are superconducting with Tc's (R = 0) up to 90 K and Jc's (at 4.2 K) above 107 A/cm2. Oxygen pressure, deposition temperature, as well as compositional dependencies of the films are presented. It is found that in conditions of lower oxygen, pressure films with average composition off the 1–2–3 stoichiometry have higher Tc's. For pressure <10 mTorr, the highest Tc obtained is for Ba/Y deposition ratio ⋚1.4. The morphology and impurity phases of these films are examined. The Ba-deficient films have oriented CuYO2 and CuO as the dominant impurity phases. C-axis lattice parameters (c0) are also examined. It is found that for a given Tc, films made at lower pressure have c0's which are expanded compared to the films made at higher pressures (>100 mTorr). The expanded c0's for these films cannot be reduced by a low temperature oxygen anneal. We suggest that metal-atom point-like defects are quenched into these films and we discuss a particular Ba-for-Y substitution model.

Type
Articles
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Chaudhari, P., Koch, R. H., Laibowitz, R. B., McGuire, T. R., and Gambino, R. J., Phys. Rev. Lett. 58, 2684 (1987); M. Naito, R. H. Hammond, B. Oh, M. R. Hahn, J. W. P. Hsu, P. Rosenthal, A. F. Marshall, M. R. Beasley, T. H. Geballe, and A. Kapitulnik, J. Mater. Res. 2, 713 (1987); P. M. Mankiewich, J. H. Schofield, J. W. Skocpol, R. E. Howard, A. H. Dayem, and E. Good, Appl. Phys. Lett. 51, 1753 (1987).CrossRefGoogle Scholar
2Feenstra, R., Lindemer, T. B., Budai, J. D., and Galloway, M. D., submitted to J. Appl. Phys.Google Scholar
3Wu, X. D., Inam, A., Venkatesan, T., Chang, C. C., Chase, E. W., Barboux, P., Tarascon, J. M., and Wilkens, B., Appl. Phys. Lett. 52, 754 (1988); S. Witanachchi, H. S. Kwok, X. W. Wang, and D. T. Shaw, Appl. Phys. Lett. 53, 234 (1988); B. Roas, L. Schultz, and G. EndTes, Appl. Phys. Lett. 53, 1557 (1988); H. Adachi, K. Hirochi, K. Setsune, M. Kitabatake, and K. Wasa, Appl. Phys. Lett. 51, 2263 (1987); H. C. Li, G. Linker, F. Ratzel, R. Smithey, and J. Geerk, Appl. Phys. Lett. 52, 1098 (1988); C. B. Eom, J. Z. Sun, K. Yamamoto, A. F. Marshall, K. E. Luther, T. H. Geballe, and S. S. Laderman, Appl. Phys. Lett. 55, 595 (1989); D. K. Lathrop, S. E. Russek, and R. A. Buhrman, Appl. Phys. Lett. 51,1554 (1987); T. Terashima, K. Iijima, K. Yamamoto, Y. Bando, and H. Mazaki, Jpn. J. Appl. Phys. 27, L91 (1988); J. Kwo, M. Hong, D. J. Trevor, R. M. Fleming, A. E. White, R. C. Farrow, A. R. Korton, and K. T. Short, Appl. Phys. Lett. 53, 2638 (1988); for a recent review see R. G. Humphreys, J. S. Satchell, N. G. Chew, J. A. Edwards, S. W. Goodyear, S. E. Blenkinsop, O. D. Dosser, and A. G. Cullis, Supercond. Sci. Technol. 3, 1 (1990).CrossRefGoogle Scholar
4 See, for example, Streiffer, S. K., Lairson, B. M., Eom, C. B., Marshall, A. F., Bravman, J. C., and Geballe, T. H., in High Resolution Electron Microscopy of Defects in Materials, edited by Dahmen, U., Sinclair, R., and Smith, D. J. (Mater. Res. Soc. Symp. Proc. 183, Pittsburgh, PA, 1990); R. Ramesh, D. M. Hwang, T. Venkatesan, T. S. Ravi, L. Nazar, A. Inam, X. D. Wu, B. Dutta, G. Thomas, A. F. Marshall, and T. H. Geballe, Science 247, 57 (1990); R. Ramesh, D. M. Hwang, T. S. Ravi, A. Inam, J. B. Barner, L. Nazar, S. W. Chan, C. Y. Chen, B. Dutta, T. Venkatesan, and X. D. Wu, Appl. Phys. Lett. 56, 2243 (1990); L. A. Tietz, C. B. Carter, D. K. Lathrop, S. E. Russek, R. A. Buhrman, and J. R. Michael, J. Mater. Res. 4, 1072 (1989); A. F. Marshall, A. Kapitulnik, K. Char, and R. W. Barton, in High-Temperature Superconductors: Fundamental Properties and Novel Materials Processing, edited by D. Christen, J. Narayan, and L. Schneemeyer (Mater. Res. Soc. Symp. Proc. 169, Pittsburgh, PA, 1990).Google Scholar
5Hylton, T. and Beasley, M. R., Phys. Rev. B 41, 11669 (1990).CrossRefGoogle Scholar
6Cava, R. J., Batlogg, B., van Dover, R. B., Murphy, D. W., Sunshine, S., Siegrist, T., Remeika, J. P., Zahurak, S., and Espinosa, G. P., Phys. Rev. Lett. 58, 1676 (1987).CrossRefGoogle Scholar
7Beyers, R., Ahn, B. T., Gorman, G., Lee, V. Y., Parkin, S. S. P., Ramirez, M. L., Roche, K. P., Vazquez, J. E., Gür, T. M., and Huggins, R. A., Nature 340, 619 (1990).CrossRefGoogle Scholar
8Hammond, R. H., IEEE Trans. Magn. MAG-11, 201 (1975); R. H. Hammond, J. Vac. Sci. Technol. 15, 382 (1978).CrossRefGoogle Scholar
9Missert, N., Hammond, R. H., Mooij, J. E., Matijasevic, V., Rosenthal, P., Garwin, E., Geballe, T. H., Kapitulnik, A., Beasley, M. R., Laderman, S. S., Lu, C., and Barton, R., IEEE Trans. Magn. MAG-25, 2418 (1988).Google Scholar
10Lu, C., Missert, N., Mooij, J. E., Rosenthal, P., Matijasevic, V., Beasley, M. R., and Hammond, R. H., Proceedings of the Topical Conference on High Tc Superconducting Thin Films, Devices, and Applications at the 35th National Symposium of the American Vacuum Society, Atlanta, GA, October 37, 1988 (American Institute of Physics Conference Proceedings No. 182, 1989), p. 163.Google Scholar
11Fehsenfeld, F. C., Evenson, K. M., and Broida, H. P., Rev. Sci. Instrum. 36, 294 (1965).CrossRefGoogle Scholar
12De Leeuw, D. M., Mooyman, R., and De Lange, C. A., Chem. Phys. Lett. 54, 231 (1978); J. A. R. Samson and P. N. Pareek, Phys. Rev. A 31, 1470 (1985).CrossRefGoogle Scholar
13Berkley, D. D., Johnson, B. R., Anand, N., Beauchamp, K. M., Conroy, L. E., Goldman, A. M., Maps, J., Mauersberger, K., Mecartney, M. L., Morton, J., Tuominen, M., and Zhang, Y-J., Appl. Phys. Lett. 53, 1973 (1988).CrossRefGoogle Scholar
14Cook, G. A., Kiffer, A. D., Klumpp, C. V., Malik, A. H., and Spence, L. A., in Advances in Chemistry Series (American Chemical Society, Washington, DC, 1959), Vol. 21, p. 44; a good general reference on ozone and its production is M. Horvath, L. Bilitzky, and J. Hüttner, Ozone (Elsevier, Amsterdam, 1985).Google Scholar
15Henderson, W. R. and Schiff, H. I., Planet. Space Sci. 18, 1527 (1970).CrossRefGoogle Scholar
16Matijasevic, V., Garwin, E. L., and Hammond, R. H., Rev. Sci. Instrum. 61, 1747 (1990).CrossRefGoogle Scholar
17Moeckly, B. H., Russek, S. E., Lathrop, D. K., Buhrman, R. A., Li, Jian, and Mayer, J. W., Appl. Phys. Lett. 57, 1687 (1990).CrossRefGoogle Scholar
18Hwang, D. M., Ramesh, R., Ravi, T. S., Chen, C. Y., Venkatesan, T., Inam, A., Nazar, L., and Chan, S-W., presented at Symposium D, Mater. Res. Soc. 1990 Spring Meeting; T. S. Ravi, D. M. Hwang, S-W. Chan, L. Nazar, C. Y. Chen, A. Inam, and T. Venkatesan, submitted to Phys. Rev. B.Google Scholar
19 Earlier data presented in Bormann, R. and Nölting, J., Appl. Phys. Lett. 54, 2148 (1989); R. H. Hammond and R. Bormann, Physica C 162–164, 703 (1989); have been superseded by a recent paper: R. Beyers and B. T. Ahn, submitted to Annual Review of Mater. Sci. The results differ by about a factor of two in pressure, with the newer data being below the previously reported data. The new data show that YBa2Cu3Oy, is stable below the CuO stability line.CrossRefGoogle Scholar
20Humphreys, R. G., Chew, N., Edwards, J. A., Satchell, J. S., Goodyear, S. W., and Blenkinsop, S. E., paper presented at the LT-19 Satellite Conference on High Temperature Superconductors, Cambridge, U. K., August 1315, 1990.Google Scholar
21Cullity, B. D., Elements of X-ray Diffraction, 2nd ed. (Addison-Wesley, 1978), p. 359.Google Scholar
22Eom, C. B., Marshall, A. F., Geballe, T. H., and Laderman, S. S., Science 249, 1549 (1990).CrossRefGoogle Scholar
23Ramesh, R., Chang, C. C., Xi, X. X., Ravi, T. S., Hwang, D. M., Li, Q., Inam, A., Wu, X. D., and Venkatesan, T., Appl. Phys. Lett. 57, 1064 (1990).CrossRefGoogle Scholar
24Ishiguro, T., Ishizawa, N., Mizutani, N., and Kato, M., J. Solid State Chem. 49, 232 (1983).CrossRefGoogle Scholar
25Marshall, A. F., Matijasevic, V., Rosenthal, P., Shinohara, K., Hammond, R. H., and Beasley, M. R., Appl. Phys. Lett. 57, 1158 (1990).CrossRefGoogle Scholar
26Ahn, B. T., Lee, V. Y., Beyers, R., Gür, T. M., and Huggins, R. A., Physica C 167, 529 (1990).CrossRefGoogle Scholar
27Borowiec, K. and Kolbrecka, K., J. Less-Common Metals 163, 143 (1990).CrossRefGoogle Scholar
28Matijasevic, V. and Hammond, R. H. (unpublished results).Google Scholar
29Marshall, A. F., Char, K., Barton, R. W., Kapitulnik, A., and Laderman, S. S., J. Mater. Res. 5, 2049 (1990).CrossRefGoogle Scholar
30Jorgensen, J. D., Veal, B. W., Paulikas, A. P., Nowicki, L. J., Crabtree, G. W., Claus, H., and Kwok, W. K., Phys. Rev. B 41, 1863 (1990).CrossRefGoogle Scholar
31Eom, C. B., Sun, J. Z., Yamamoto, K., Marshall, A. F., Luther, K. E., Geballe, T. H., and Laderman, S. S., Appl. Phys. Lett. 55, 595 (1989).CrossRefGoogle Scholar
32Rothman, S. J., Routbort, J. L., and Baker, J. E., Phys. Rev. B 40, 8852 (1989); S. J. Rothman, J. L. Routbort, J-Z. Liu, J. W. Downey, L. J. Thompson, Y. Fang, D. Shi, J. E. Baker, J. P. Rice, D. M. Ginsberg, P. D. Han, and D. A. Payne, in Proc. Metall. Soc. Fall Meeting, 1–5 October, 1989, Indianapolis (Symp. on Atomic Migration and Defects in Materials), in press.CrossRefGoogle Scholar
33Fork, D. K., Fenner, D. B., Barton, R. W., Phillips, J. M., Connell, G. A. N., Boyce, J. B., and Geballe, T. H., Appl. Phys. Lett. 57, 1161 (1990).CrossRefGoogle Scholar
34 The (00l) line intensity variations were previously reported also by Michikami, O., Asahi, M., and Asano, H., Jpn. J. Appl. Phys. 28, L91 (1989).CrossRefGoogle Scholar
35Eom, C. B., Sun, J. Z., Streiffer, S. K., Marshall, A. F., Lairson, B. M., Yamamoto, K., Anlage, S. M., Bravman, J. C., Geballe, T. H., Laderman, S. S., and Taber, R. C., to appear in Physica C, November 1990.Google Scholar
36Roas, B., Hensel, B., Endres, G., Schultz, L., Klaumünzer, S., and Saemann-Ischenko, G., Physica C 162164, 135 (1989); L. Schultz, B. Roas, P. Schmitt, and G. Endres, Proc. Conf. on Processing of Films for High T cSuperconducting Electronics, SPIE 1187, 204 (1989).Google Scholar
37Morris, G. W., Tomlinson, E. J., Somekh, R. E., Barber, Z. H., Williams, E. J., Ray, M. P., and Evetts, J. E., presented at the ASC Conference, Boulder, CO, Sept. 1990.Google Scholar
38Schlom, D., Ph.D. Thesis, Stanford University.Google Scholar
39 Cation disorder was first suggested for thin films by Hellman, E. S., Schlom, D. G., Marshall, A. F., Streiffer, S. K., Harris, J. S. Jr, Beasley, M. R., Bravman, J. C., Geballe, T. H., Eckstein, J. N., and Webb, C., J. Mater. Res. 4, 476 (1989).CrossRefGoogle Scholar
40Fork, D. K. and Eom, C-B. (private communication).Google Scholar
41 A good review is given by Beyers, R. and Shaw, T. M., “The Structure of Y1Ba2Cu3O7-δ and Its Derivatives”, in Solid State Physics, edited by Ehrenreich, H. and Turnbull, D. (Academic Press, 1989), Vol. 42.Google Scholar
42Shannon, R. D., Acta Cryst. A 32, 751 (1976).CrossRefGoogle Scholar
43Iqbal, Z., Reidinger, F., Bose, A., Cipollini, N., Taylor, T. J., Eckhardt, H., Ramakrishna, B. L., and Ong, E. W., Nature 331, 326 (1988).CrossRefGoogle Scholar
44 To our knowledge there was only one report of “heavy atom disorder” between Y and Ba which has not been fully substantiated: Van Tendeloo, G., Zandbergen, H. W., Okabe, T., and Amelinckx, S., Solid State Commun. 63, 969 (1987).CrossRefGoogle Scholar
45 The O6.75 tetragonal YBaCuO, so-called Tetra-I, was first reported by Nakazawa, Ishikawa, M., Takabatake, T., Koga, K., and Terakura, K., Jpn. J. Appl. Phys. 26, L796 (1987). There is mixed evidence whether this phase has any cation disorder. This phase is usually synthesized under high oxygen pressure conditions.Google Scholar
46Hellman, E. S., Schlom, D. G., Missert, N., Char, K., Harris, J. S., Beasley, M. R., Kapitulnik, A., Geballe, T. H., Eckstein, J. N., Weng, S. L., and Webb, C., J. Vac. Sci. Technol. B 6, 799 (1989).CrossRefGoogle Scholar
47Shaffer, M. W., Penney, T., and Olsen, B., Phys. Rev. B 36, 4047 (1987).CrossRefGoogle Scholar
48Tokura, Y., Torrance, J. B., Huang, T. C., and Nazzal, A. I., Phys. Rev. B 38, 7156 (1988).CrossRefGoogle Scholar
49Tokiwa, A., Syono, Y., Kikuchi, M., Suzuki, R., Kajitani, T., Kobayashi, N., Sasaki, T., Nakatsu, O., and Muto, Y., Jpn. J. Appl. Phys. 27, L1009 (1988).CrossRefGoogle Scholar
50Morris, D. E., Narwankar, P., Sinha, A. P. B., Takano, K., and Shum, V. T., Phys. Rev. B 41, (1990).CrossRefGoogle Scholar
51Mitzi, D. B., Feffer, P. T., Newsam, J. M., Webb, D. J., Klavins, P., Jacobson, A. J., and Kapitulnik, A., Phys. Rev. B 38, 6667 (1988).CrossRefGoogle Scholar