Skip to main content Accessibility help
×
Home

Reaction evolution in Sn–20.0 wt% In–2.8 wt% Ag/Ni couples

  • Sinn-wen Chen (a1), Che-wei Hsu (a1), Shih-kang Lin (a2) and Chia-ming Hsu (a3)

Abstract

Interfacial reactions at 100 and 150 °C in the Sn–20.48 at.% In–3.05 at.% Ag (Sn–20.0 wt% In–2.8 wt% Ag)/Ni couples are studied. Three unusual phenomena are observed. First, liquation is found in Sn–20.48 at.% In–3.05 at.% Ag (Sn–In–Ag)/Ni couples that are reacted at 150 °C, which is lower than the melting points of both the solder and the Ni substrate. In addition to the Ni3Sn4 phase, liquid phase is formed in the reaction layer. Second, the liquid phase disappears and isothermal solidification occurs when there is prolonged isothermal heat treatment at 150 °C. The results are similar to those for transient liquid phase bonding. Third, the thickness of the reaction layer in Sn–In–Ag/Ni couples that are reacted for 1440 h at 150 °C is 40 times thicker than that of those reacted at 100 °C. The reaction mechanisms for these three unusual phenomena: liquation, isothermal solidification, and an extraordinary increase in the reaction rate for only 50 °C difference in temperature are elaborated and are related to each other.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Reaction evolution in Sn–20.0 wt% In–2.8 wt% Ag/Ni couples
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Reaction evolution in Sn–20.0 wt% In–2.8 wt% Ag/Ni couples
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Reaction evolution in Sn–20.0 wt% In–2.8 wt% Ag/Ni couples
      Available formats
      ×

Copyright

Corresponding author

a) Address all correspondence to this author. e-mail: swchen@mx.nthu.edu.tw

References

Hide All
1. Kang, S.K. and Ramachandran, V.: Growth-kinetics of intermetallic phases at the liquid Sn and solid Ni interface. Scr. Metall. 14(4), 421 (1980).
2. Chen, S.W., Chen, C.C., and Chang, C.H.: Interfacial reactions in Sn/Ni-7 wt.%V couple. Scr. Mater. 56(6), 453 (2007).
3. Haimovich, J.: Intermetallic compound growth in tin and tin-lead platings over nickel and its effects on solderability. Weld. J. 68(3), S102 (1989).
4. Chuang, T.H., Huang, K.W., and Lin, W.H.: Mechanisms for the intermetallic formation during the Sn-20In-2.8Ag/Ni soldering reactions. J. Electron. Mater. 33(4), 374 (2004).
5. Wu, H.M., Wu, F.C., and Chuang, T.H.: Intermetallic reactions in a Sn-20In-2.8Ag solder ball-grid-array package with Au/Ni/Cu pads. J. Electron. Mater. 34(11), 1385 (2005).
6. Huang, C.Y. and Chen, S.W.: Interfacial reactions in In-Sn/Ni couples and phase equilibria of the In-Sn-Ni system. J. Electron. Mater. 31(2), 152 (2002).
7. Okamoto, H.: In-Ni (indium-nickel). J. Phase Equilib. 24(4), 379 (2003).
8. Okamoto, H.: In-Sn (indium-tin). J. Phase Equilib. Diffus. 27(3), 313 (2006).
9. Yeh, C.H., Chang, L.S., and Straumal, B.: Study on the solidus line in Sn-rich region of Sn-In phase diagram. J. Phase Equilib. Diffus. 30(3), 254 (2009).
10. Chen, C.M. and Chen, S.W.: Electromigration effect upon the Sn/Ag and Sn/Ni interfacial reactions at various temperatures. Acta Mater. 50(9), 2461 (2002).
11. Chen, S.W. and Lin, S.K.: Effects of temperature on interfacial reactions in gamma-InSn4/Ni couples. J. Mater. Res. 21(5), 1161 (2006).
12. Lin, S.K. and Chen, S.W.: Interfacial reactions in the Sn-20 at.% In/Cu and Sn-20 at.% In/Ni couples at 160 degrees C. J. Mater. Res. 21(7), 1712 (2006).
13. Chen, S.W., Lee, W.Y., Hsu, C.M., Yang, C.F., Hsu, H.Y., and Wu, H.J.: Sn-In-Ag phase equilibria and Sn-In-(Ag)/Ag interfacial reactions. Mater. Chem. Phys. 128(3), 357 (2011).
14. Macdonald, W.D. and Eagar, T.W.: Transient liquid-phase bonding. Annu. Rev. Mater. Sci. 22, 23 (1992).
15. Vanloo, F.J.J.: Multiphase diffusion in binary and ternary solid-state systems. Prog. Solid State Chem. 20(1), 47 (1990).

Keywords

Reaction evolution in Sn–20.0 wt% In–2.8 wt% Ag/Ni couples

  • Sinn-wen Chen (a1), Che-wei Hsu (a1), Shih-kang Lin (a2) and Chia-ming Hsu (a3)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed