Skip to main content Accessibility help
×
Home

Rate dependence of shear banding and serrated flows in a bulk metallic glass

  • W.H. Jiang (a1), G.J. Fan (a1), F.X. Liu (a1), G.Y. Wang (a1), H. Choo (a2) and P.K. Liaw (a1)...

Abstract

Using an infrared camera, we observed in situ dynamic shear-banding operations during compression of a bulk metallic glass at various strain rates. We demonstrated that the shear-banding events are highly dependent on strain rates, either intermittent at the lower strain rate or successive at the higher strain rate. Serrated plastic-flow behaviors are a result of shear-banding operations. These observations provide a new insight into inhomogeneous deformation of metallic glasses.

Copyright

Corresponding author

a) Address all correspondence to this author. e-mail: wjiang5@utk.edu

References

Hide All
1Greer, A.L.: Metallic glasses. Science 267, 1947 (1995).
2Peker, A. and Johnson, W.L.: A highly processable metallic glass: Zr41.2Ti13.8Cu12.5Ni10Be22.5. Appl. Phys. Lett. 63, 2342 (1993).
3Inoue, A., Zhang, T., and Takeuchi, A.: Ferrous and nonferrous bulk amorphous alloys. Mater. Sci. Forum 269–272, 855 (1998).
4Johnson, W.L.: Bulk glass-forming metallic alloys: Science and technology. MRS Bull. 24(10), 42 (1999).
5Johnson, W.L.: Bulk amorphous metal—An emerging engineering material. JOM 54(3), 40 (2002).
6Spaepen, F.: A microscopic mechanism for steady state inhomogeneous flow in metallic glasses. Acta Metall. 25, 407 (1977).
7Argon, A.S.: Plastic deformation in metallic glasses. Acta Metall. 27, 47 (1979).
8Mukai, T., Nieh, T.G., Kawamura, Y., Inoue, A., and Higashi, K.: Effect of strain rate on compressive behavior of a Pd40Ni40P20 bulk metallic glass. Intermetallics 10, 1071 (2002).
9Schuh, C.A. and Nieh, T.G.: A nanoindentation study of serrated flow in bulk metallic glasses. Acta Mater. 51, 87 (2003).
10Schuh, C.A., Lund, A.C., and Nieh, T.G.: New regime of homogeneous flow in the deformation map of metallic glasses: Elevated temperature nanoindentation experiments and mechanistic modeling. Acta Mater. 52, 5879 (2004).
11Zhang, G.P., Wang, W., Zhang, B., Tan, J., and Liu, C.S.: On rate-dependent serrated flow behavior in amorphous metals during nanoindentation. Scripta Mater. 52, 1147 (2005).
12Schuh, C.A., Argon, A.S., Nieh, T.G., and Wadsworth, J.: The transition from localized to homogeneous plasticity during nanoindentation of an amorphous metal. Philos. Mag. 83, 2585 (2003).
13Chen, H.S.: Plastic flow in metallic glasses under compression. Scripta Metall. 7, 931 (1973).
14Kimura, H. and Masumoto, T.: A model of the mechanics of serrated flow in an amorphous alloy. Acta Metall. 31, 231 (1983).
15Wright, W.J., Schwarz, R.B., and Nix, W.D.: Localized heating during serrated plastic flow in bulk metallic glasses. Mater. Sci. Eng., A 319–321, 229 (2001).
16Wright, W.J., Saha, R., and Nix, W.D.: Deformation mechanisms of the Zr40Ti14Ni10Cu12Be24 bulk metallic glass. Mater. Trans., JIM 42, 642 (2001).
17Kimura, H. and Masumoto, T.: Deformation and fracture of an amorphous Pd-Cu-Si alloy in V-notch bending tests—I. Model mechanics of inhomogeneous plastic flow in non-strain hardening solid. Acta Metall. 28, 1663 (1980).
18Kimura, H. and Masumoto, T.: Deformation and fracture of an amorphous Pd–Cu–Si alloy in V-notch bending tests—II. Ductile-brittle transition. Acta Metall. 28, 1677 (1980).
19Hufnagel, T.C., El-Deiry, P., and Vinci, R.P.: Development of shear band structure during deformation of a Zr57Ti15Cu20Ni8Al10 bulk metallic glass. Scripta Mater. 43, 1071 (2000).
20Golovin, Y.I., Ivolgin, V.I., Khonik, V.A., Kitagawa, K., and Tyurin, A.I.: Serrated plastic flow during nanoindentation of a bulk metallic glass. Scripta Mater. 45, 947 (2001).
21Schuh, C.A., Nieh, T.G., and Kawamura, Y.: Rate dependence of serrated flow during nanoindentation of a bulk metallic glass. J. Mater. Res. 17, 1651 (2002).
22Jiang, W.H. and Atzmon, M.: Rate dependence of serrated flow in a metallic glass. J. Mater. Res. 18, 755 (2003).
23Kimura, H. and Masumoto, T.: A model of the mechanics of shear-crack propagation in tearing for amorphous metals. II. Kinetics of inhomogeneous flow. Philos. Mag. A 44, 1021 (1981).
24Zhang, Z.F., Eckert, J., and Schultz, L.: Difference in compressive and tensile fracture mechanisms of Zr59Cu20Al10Ni8Ti3 bulk metallic glass. Acta Mater. 51, 1167 (2003).
25Zhang, Z.F., Zhang, H., Pan, X.F., Das, J., and Eckert, J.: Effect of aspect ratio of Zr-based bulk metallic glass. Philos. Mag. Lett. 85, 513 (2005).
26Yang, B., Liaw, P.K., Wang, G.Y., Morrison, M.L., Liu, C.T., Buchanan, R.A., and Yokoyama, Y.: In situ thermographic observation of mechanical damage in bulk metallic glasses during fatigue and tensile experiments. Intermetallics 12, 1265 (2004).
27Yang, B., Morrison, M.L., Liaw, P.K., Raymond, R.A., Wang, G.Y., Liu, C.T., and Denda, M.: Dynamic evolution of nanoscale shear bands in a bulk metallic glass. Appl. Phys. Lett. 86, 141904 (2005).
28Lewandowski, J.J. and Greer, A.L.: Temperature rise at shear bands in metallic glasses. Nat. Mater. 5, 15 (2006).
29Jiang, W.H., Fan, G.J., Choo, H., and Liaw, P.K.: Ductility of a Zr-based bulk metallic glass with different specimen’s geometries. Mater. Lett. (2006, in press).
30Hays, C.C., Kim, C.P., and Johnson, W.L.: Microstructure controlled shear band pattern formation and enhanced plasticity of bulk metallic glasses containing in situ formed ductile phase dendrite dispersions. Phys. Rev. Lett. 84, 2901 (2000).

Keywords

Rate dependence of shear banding and serrated flows in a bulk metallic glass

  • W.H. Jiang (a1), G.J. Fan (a1), F.X. Liu (a1), G.Y. Wang (a1), H. Choo (a2) and P.K. Liaw (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed