Hostname: page-component-77c89778f8-fv566 Total loading time: 0 Render date: 2024-07-20T22:16:50.643Z Has data issue: false hasContentIssue false

The radiation-induced crystalline-to-amorphous transition in zircon

Published online by Cambridge University Press:  03 March 2011

William J. Weber
Affiliation:
Materials Sciences Department, Pacific Northwest Laboratory, P.O. Box 999, Richland, Washington 99352
Rodney C. Ewing
Affiliation:
Materials Sciences Department, Pacific Northwest Laboratory, P.O. Box 999, Richland, Washington 99352
Lu-Min Wang
Affiliation:
Department of Earth and Planetary Sciences, University of New Mexico, Albuquerque, New Mexico 87131
Get access

Abstract

A comprehensive understanding of radiation effects in zircon, ZrSiO4, over a broad range of time scales (0.5 h to 570 million years) has been obtained by a study of natural zircon, Pu-doped zircon, and ion-beam irradiated zircon. Radiation damage in zircon results in the simultaneous accumulation of both point defects and amorphous regions. The amorphization process is consistent with models based on the multiple overlap of particle tracks, suggesting that amorphization occurs as a result of a critical defect concentration. The amorphization dose increases with temperature in two stages (below 300 K and above 473 K) and is nearly independent of the damage source (α-decay events or heavy-ion beams) at 300 K. Recrystallization of completely amorphous zircon occurs above 1300 K and is a two-step process that involves the initial formation of pseudo-cubic ZrO2.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Brøgger, W. C., Amorf: Salmonsens store illustrerede Konversationslexikon (1893), Vol. 1, p. 742.Google Scholar
2Ewing, R. C., Chakoumakos, B. C., Lumpkin, G. R., and Murakami, T., MRS Bull. XII (4), 58 (1987).CrossRefGoogle Scholar
3Chakoumakos, B. C., Murakami, T., Lumpkin, G. R., and Ewing, R. C., Science 236, 1556 (1987); Chakoumakos, B. C., Oliver, W. C., Lumpkin, G. R., and Ewing, R. C., Radiat. Eft. 118, 393 (1991); Murakami, T., Chakoumakos, B. C., and Ewing, R. C., in Advances in Ceramics (The American Ceramic Society, Westerville, OH, 1986), Vol. 20, p. 745.Google Scholar
4Holland, H. D. and Gottfried, D., Acta Crystallogr. 8, 291 (1955).CrossRefGoogle Scholar
5Murakami, T., Chakoumakos, B. C., Ewing, R. C., Lumpkin, G. R., and Weber, W. J., Am. Mineralogist 76, 1510 (1991).Google Scholar
6Woodhead, J. A., Rossman, G. R., and Silver, L. T., Am. Mineralogist 76, 74 (1991).Google Scholar
7Harker, A. B. and Flintoff, J. F., in Scientific Basis for Nuclear Waste Management VII, edited by McVay, G. L. (North Holland, New York, 1984), p. 513.Google Scholar
8Babsail, L., Hamelin, N., and Townsend, P., Nucl. Instrum. Methods B59/ 60, 1219 (1991).CrossRefGoogle Scholar
9Wang, L. M. and Ewing, R. C., Nucl. Instrum. Methods B 65, 324 (1992).CrossRefGoogle Scholar
10Silver, L. T., in Stable Isotope Geochemistry: A Tribute to Samuel Epstein, Special Publication No. 3, edited by Taylor, H. P. Jr., O'Neil, J. R., and Kaplan, I. R. (The Geochemical Society, Pergamon Press, Terrytown, NY, 1991), p. 391.Google Scholar
11Weber, W. J., J. Mater. Res. 5, 2687 (1990); J. Am. Ceram. Soc. 76, 1729 (1993).CrossRefGoogle Scholar
12Ziegler, J. F., Biersack, J. P., and Littmark, U., The Stopping and Range of Ions in Solids (Pergamon Press, New York, 1985).Google Scholar
13Headley, T. J., Ewing, R. C., and Haaker, R. F., in 39th Ann. Proc. Electron Microscopy Soc. Amer., edited by Bailey, G. W. (Atlanta, 1981), p. 112.Google Scholar
14Headley, T. J. and Ewing, R. C., in Microbeam Analysis-1986, edited by Romig, A. D. Jr., and Chambers, W. F. (San Francisco Press, San Francisco, CA, 1986), p. 141.Google Scholar
15Miller, M. L. and Ewing, R. C., Ultramicrosc. 48, 203 (1993).CrossRefGoogle Scholar
16Headley, T. J., Ewing, R. C., and Haaker, R. F., Nature 293, 449 (1981).CrossRefGoogle Scholar
17Ewing, R. C. and Headley, T. J., J. Nucl. Mater. 119, 102 (1983).CrossRefGoogle Scholar
18Weber, W. J., Wald, J. W., and Matzke, Hj., J. Nucl. Mater. 138, 196 (1986).CrossRefGoogle Scholar
19Weber, W. J. and Matzke, Hj., Radiat. Eff. 98, 93 (1986).CrossRefGoogle Scholar
20Weber, W. J. and Matzke, Hj., Mater. Lett. 5, 9 (1986).CrossRefGoogle Scholar
21Clinard, F. W. Jr., Am. Ceram. Soc. Bull. 65, 1181 (1986).Google Scholar
22Nellis, W. J., Inorg. Nucl. Chem. 13, 393 (1977).CrossRefGoogle Scholar
23Weber, W. J., J. Nucl. Mater. 98, 206 (1981).CrossRefGoogle Scholar
24Farges, F. and Calas, G., Am. Mineralogist 76, 60 (1991).Google Scholar
25Swanson, M. L., Parsons, J. R., and Hoelke, C. W., in Radiation Effects in Semiconductors, edited by Corbett, J. W. and Watkins, G. D. (Gordon and Breach, New York, 1971), p. 359.Google Scholar
26Gibbons, J. F., Proc. IEEE 60, 1062 (1972).CrossRefGoogle Scholar
27Carter, G. and Webb, R., Radiat. Eff. Lett. 43, 19 (1979).CrossRefGoogle Scholar
28Webb, R. and Carter, G., Radiat. Eff. 42, 159 (1979).CrossRefGoogle Scholar
29Webb, R. P. and Carter, G., Radiat. Eff. 59, 69 (1981).CrossRefGoogle Scholar
30Carter, G., Radiat. Eff. Lett. 86, 25 (1983).CrossRefGoogle Scholar
31Koike, J., Okamoto, P. R., Rehn, L. E., and Meshii, M., J. Mater. Res. 4, 1143 (1989).CrossRefGoogle Scholar
32Vance, E. R. and Anderson, B. W., Mineralogical Mag. 38, 605 (1972).CrossRefGoogle Scholar
33Vance, E. R. and Boland, J. N., Radiat. Eff. 26, 135 (1975).CrossRefGoogle Scholar
34Vance, E. R., Radiat. Eff. 24, 1 (1975).CrossRefGoogle Scholar
35Roy, R., in Advances in Nucleation and Crystallization in Glasses, edited by Hench, L. L. and Freiman, S. W. (The American Ceramic Society, Westerville, OH, 1971), p. 51.Google Scholar
36Lumpkin, G. R. and Ewing, R. C., Phys. Chem. Minerals 16, 2 (1988).CrossRefGoogle Scholar
37Allen, C. W., Funk, L. L., Ryan, E. A., and Taylor, A., Nucl. Instrum. Methods B40/ 41, 553 (1989).CrossRefGoogle Scholar
38Delage, J., Popoola, O., Villain, J. P., and Moine, P., Mater. Sci. Eng. A 115, 133 (1989).CrossRefGoogle Scholar
39Carter, G. and Nobes, M. J., J. Mater. Res. 6, 2103 (1991).CrossRefGoogle Scholar
40Weber, W. J. and Wang, L. M., in Beam-Solid Interactions: Fundamentals and Applications, edited by Nastasi, M. A., Herbots, N., Harriott, L. R., and Averback, R. S. (Mater. Res. Soc. Symp. Proc. 279, Pittsburgh, PA, 1993), p. 523.Google Scholar
41Morehead, F. F. and Crowder, B. L., Radiat. Eff. 6, 27 (1970).CrossRefGoogle Scholar
42Weber, W. J. and Wang, L. M., in Proc. 7th Int. Conf. on Radiation Effects in Insulators, edited by Itoh, N. and Tanimura, K. (in press).Google Scholar
43Sandhu, A. S., Singh, L., Ramola, R. C., Singh, S., and Virk, H. S., Nucl. Instrum. Methods B 46, 122 (1990).CrossRefGoogle Scholar
44Wang, L. M., Ewing, R. C., Weber, W. J., and Eby, R. K., in Beam-Solid Interactions: Fundamentals and Applications, edited by Nastasi, M. A., Herbots, N., Harriott, L. R., and Averback, R. S. (Mater. Res. Soc. Symp. Proc. 279, Pittsburgh, PA, 1993), p. 451.Google Scholar
45Wiedersich, H., Radiat. Eff. 113, 97 (1990).CrossRefGoogle Scholar
46Rehn, L. E., J. Nucl. Mater. 174, 144 (1990).CrossRefGoogle Scholar