Skip to main content Accessibility help
×
Home

Quantum chemical study of adsorption and dissociation of HfCl4 and H2O on Ge/Si(100) − (2×1): Initial stage of atomic layer deposition of HfO2 on SiGe surface

  • Wei Chen (a1), David Wei Zhang (a1), Jie Ren (a1), Hong-Liang Lu (a1), Jian-Yun Zhang (a1), Min Xu (a1), Ji-Tao Wang (a1) and Li-Kong Wang (a1)...

Abstract

We investigated adsorption and dissociation of water and HfCl4 on a Ge/Si(100) −(2 × 1) surface with a density-functional theory. The Si–Ge and Ge–Ge homodimers are used to represent the Si1−xGex surface. (i) Water first adsorbs on the bare Ge/Si(100) − (2 × 1) surface and then dissociates into OH and H. The activation energy for adsorption of water on the Ge–Ge homodimer is much higher than that on the Si–Ge heterodimer. (ii) HfCl4 dissociates upon adsorption on the Ge/Si(100) − (2 × 1) surface into HfCl3 and Cl. No net activation barrier exists during the adsorption of HfCl4 on both SiGe surface dimers. The molecular adsorption state is found to be metastable according to the calculation, which implies that the reaction tends to move toward to the product rather than trapping in HfCl4 adsorbed state. The difference in the potential energy surface between reactions on Si–Ge and Ge–Ge dimers is due to different bond strengths.

Copyright

Corresponding author

a)Address all correspondence to this author. e-mail: dwzhang@fudan.ac.cn

References

Hide All
1.Wilk, G.D., Wallace, R.M. and Anthony, J.M.: High-k gate dielectrics: Current status and materials properties considerations. J. Appl. Phys. 89, 5243 (2001).
2.Gusev, E.P., Cabral, C. Jr., Copel, M., D'Emic, C. and Gribelyuk, M.: Ultrathin HfO2 films grown on silicon by atomic layer deposition for advanced gate dielectrics applications. Microelectron. Eng. 69, 145 (2003).
3.Gutowski, M., Jaffe, J.E., Liu, C.L., Stoker, M., Hedge, R.I., Rai, R.S. and Tobin, P.J.: Thermodynamic stability of high-k dielectric metal oxides ZrO2 and HfO2 in contact with Si and SiO2. Appl. Phys. Lett. 80, 1897 (2002).
4.Cho, M-H., Roh, Y.S., Whang, C.N., Jeong, K., Nahm, S.W., Ko, D-H., Lee, J.H., Lee, N.I. and Fujihara, K.: Thermal stability and structural characteristics of HfO2 films on Si (100) grown by atomic-layer deposition. Appl. Phys. Lett. 81, 472 (2002).
5.Lee, B.H., Kang, L., Nieh, R., Qi, W-J. and Lee, J.C.: Thermal stability and electrical characteristics of ultrathin hafnium oxide gate dielectric reoxidized with rapid thermal annealing. Appl. Phys. Lett. 76, 1926 (2000).
6.Ritala, M., Leskela, M., Niinisto, L., Prohaska, T., Friedbacher, G. and Grassbauer, M.: Surface roughness reduction in atomic layer epitaxy growth of titanium dioxide thin films. Thin Solid Films 249, 155 (1994).
7.Leskela, M. and Ritala, M.: Atomic layer deposition (ALD): From precursors to thin film structures. Thin Solid Films 409, 138 (2002).
8.Kukli, K., Ritala, M., Sundqvist, J., Aarik, J., Lu, J., Sajavaara, T. and Harsta, A.: Properties of hafnium oxide films grown by atomic layer deposition from hafnium tetraiodide and oxygen. J. Appl. Phys. 92, 5698 (2002).
9.Sundqvist, J., Harsta, A., Aarik, J., Kukli, K. and Aidla, A.: Atomic layer deposition of polycrystalline HfO2 films by the HfI4–O2 precursor combination. Thin Solid Films 427, 147 (2003).
10.Dey, S.K., Wang, C-G., Tang, D., Kim, M.J., Carpenter, R.W., Werkhoven, C. and Shero, E.: Atomic layer chemical vapor deposition of ZrO2-based dielectric films: Nanostructure and nanochemistry. J. Appl. Phys. 93, 4144 (2003).
11.Cho, M., Park, H.B., Park, J., Lee, S.W., Hwang, C.S., Jang, G.H. and Jeong, J.: High-k properties of atomic-layer-deposited HfO2 films using a nitrogen-containing Hf[N(CH3)2]4 precursor and H2O oxidant. Appl. Phys. Lett. 83, 5503 (2003).
12.Cho, M-H., Chang, H.S., Moon, D.W., Kang, S.K., Min, B.K., Ko, D-H., Kim, H.S., McIntyre, P.C., Lee, J.H., Ku, J.H. and Lee, N.I.: Interfacial characteristics of HfO2 films grown on strained Si0.7Ge0.3 by atomic-layer deposition. Appl. Phys. Lett. 84, 1171 (2004).
13.Widjaja, Y. and Musgrave, C.B.: Atomic layer deposition of hafnium oxide: A detailed reaction mechanism from first principles. J. Chem. Phys. 117, 1931 (2002).
14.Esteve, A., Rouhani, M. Djafari, Jeloaica, L. and Esteve, D.: DFT investigation of HfCl4 decomposition on hydroxylated SiO2: First stage of HfO2 atomic layer deposition. Comp. Mater. Sci. 27, 75 (2003).
15.Ismail, K., Chu, J.O. and Meyerson, B.S.: High hole mobility in SiGe alloys for device applications. Appl. Phys. Lett. 64, 3124 (1994).
16.Jenkins, S.J. and Srivastava, G.P.: Energetic evidence for mixed dimer growth on the Si(001)/Ge(2 × 1) surface. Surf. Sci. 377–379, 887 (1997).
17.Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Montgomery, J.A. Jr., Vreven, T., Kudin, K.N., Burant, J.C., Millam, J.M., Iyengar, S.S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G.A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J.E., Hratchian, H.P., Cross, J.B., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Ayala, P.Y., Morokuma, K., Voth, G.A., Salvador, P., Dannenberg, J.J., Zakrzewski, V.G., Dapprich, S., Daniels, A.D., Strain, M.C., Farkas, O., Malick, D.K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Ortiz, J.V., Cui, Q., Baboul, A.G., Clifford, S., Cioslowski, J., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R.L., Fox, D.J., Keith, T., Al-Laham, M.A., Peng, C.Y., Nanayakkara, A., Challacombe, M., Gill, P.M.W., Johnson, B., Chen, W., Wong, M.W., Gonzalez, C. and Pople, J.A.: GAUSSIAN 03, Revision B.05 (Gaussian, Inc., Pittsburgh, PA, 2003).
18.Becke, A.D.: A new mixing of Hartree–Fock and local density-functional theories. J. Chem. Phys. 98, 1372 (1993).
19.Hay, P.J. and Wadt, W.R.: Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. J. Chem. Phys. 82, 270 (1985).
20.Wadt, W.R. and Hays, P.J.: Ab initio effective core potentials for molecular calculations. Potentials for main-group elements Na to Bi. J. Chem. Phys. 82, 284 (1985).
21.Hay, P.J. and Wadt, W.R.: Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. J. Chem. Phys. 82, 299 (1985).
22.Jenkins, S.J. and Srivastava, G.P.: Theoretical evidence concerning mixed dimer growth on the Si(100)(2×1)-Ge surface. J. Phys. Condens. Matter 8, 6641 (1996).
23.Mui, C., Bent, S.F. and Musgrave, C.B.: A theoretical study of the structure and thermochemistry of 1,3-butadiene on the Ge–Si(100) − 2 × 1 surface. J. Phys. Chem. A. 104, 2457 (2000).
24.Konecny, R. and Doren, D.J.: Adsorption of water on Si(100) − (2 × 1): A study with density-functional theory. J. Chem. Phys. 106, 2426 (1997).
25.Cho, J-H., Kim, K.S., Lee, S-H. and Kang, M-H.: Dissociative adsorption of water on the Si(001) surface: A first-principles study. Phys. Rev. B 61, 4503 (2000).
26.Foraker, A. and Doren, D.J.: Dissociative adsorption of water on Ge(100) − (2×1): First-principles theory. J. Phys. Chem. B 107, 8507 (2003).
27.Cho, J-H., Kleinman, L., Jin, K-J. and Kim, K.S.: Theoretical study of water adsorption on the Ge(100) surface. Phys. Rev. B. 66, 113306 (2002).
28.Widjaja, Y., Han, J.H. and Musgrave, C.B.: Quantum chemical study of zirconium oxide deposition on the Si(100) − (2×1) surface. J. Phys. Chem. B. 107, 9319 (2003).

Keywords

Quantum chemical study of adsorption and dissociation of HfCl4 and H2O on Ge/Si(100) − (2×1): Initial stage of atomic layer deposition of HfO2 on SiGe surface

  • Wei Chen (a1), David Wei Zhang (a1), Jie Ren (a1), Hong-Liang Lu (a1), Jian-Yun Zhang (a1), Min Xu (a1), Ji-Tao Wang (a1) and Li-Kong Wang (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed