Hostname: page-component-77c89778f8-rkxrd Total loading time: 0 Render date: 2024-07-17T08:15:39.516Z Has data issue: false hasContentIssue false

Quantitative study of water transport during the hydrolysis of polymer coatings exposed to water vapor

Published online by Cambridge University Press:  31 January 2011

Sanboh Lee
Affiliation:
Department of Materials Science, National Tsing Hua University, Hsinchu, Taiwan, Republic of China
Tinh Nguyen
Affiliation:
Materials and Construction Research Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899
Eric Byrd
Affiliation:
Materials and Construction Research Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899
Jon Martin
Affiliation:
Materials and Construction Research Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899
Get access

Abstract

Thermoset acrylic–melamine resins are widely used for automobile exterior coatings. These materials are formulated by reacting an acrylic polyol with an alkylated melamine. Because the reactions are reversible, acrylic–melamine coatings tend to hydrolyze during exposures in moist environments. During hydrolysis, water in the coating film is consumed. To keep the moisture content in the film in equilibrium, water must be transported from regions of high water concentration to regions of low water concentration. An approach based on Fourier transform infrared (FTIR) spectroscopy analysis of the coating degradation fitted to a transport model is presented to estimate the diffusion coefficients and velocities of water transport during the hydrolysis of an acrylic–melamine coating exposed to different relative humidities (RHs). Theoretical prediction agreed well with the experimental FTIR data of coating hydrolytic degradation. Generally, both the diffusion coefficient and velocity of water transport in the coating increased with increasing RH. Since water transport resulting from the hydrolysis reactions is a very slow and complex process, the approach presented here provides a viable means for obtaining valuable data for quantitative analyses of coating hydrolytic degradation at different RHs.

Type
Articles
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Bauer, D.R., J. Appl. Polym. Sci. 27, 3651 (1982).CrossRefGoogle Scholar
2.Schmitz, P.J., Holubka, J.W., and Xu, L.F., J. Coatings Technol. 72, 39 (2000).CrossRefGoogle Scholar
3.Nguyen, T., Martin, J.W., Byrd, E., and Embree, N., J. Coatings Technol. 75, 37 (2003).CrossRefGoogle Scholar
4.Barrie, J.A., in Diffusion in Polymers, edited by Crank, J. and Park, G.S. (Academic Press, New York, NY, 1968), pp. 260312.Google Scholar
5.Nguyen, T., Bentz, D., and Byrd, E., J. Coatings Technol. 67, 37 (1995).Google Scholar
6. S. Rowland, P., ed., Water in Polymers, ACS Symposium Series 127 (American Chemical Society, Washington, DC, 1980).CrossRefGoogle Scholar
7.Alfrey, T., Gurnee, E.F., and Lloyd, W.G., J. Polym. Sci. 12, 249 (1966).Google Scholar
8.Crank, J., The Mathematics of Diffusion, 2nd ed. (Clarendon Press, Oxford, U.K., 1975).Google Scholar
9.Thomas, N.L. and Windle, A.H., Polymer 23, 529 (1982).CrossRefGoogle Scholar
10.Govindjee, S. and Simo, J.C., J. Mech. Phys. Solids 41, 863 (1993).CrossRefGoogle Scholar
11.Vieth, W.R., Howell, J.M., and Hsieh, J.H., J. Membrane Sci. 1, 177 (1976).CrossRefGoogle Scholar
12.Yi, X. and Pellegrino, J., J. Polym. Sci., Part B: Polym. Phys. 40, 980 (2002).CrossRefGoogle Scholar
13.Kwei, T.K. and Zupko, H.M., J. Polym. Sci., Part A-2 7, 876 (1969).Google Scholar
14.Kwei, T.K., Wang, T.T., and Zupko, H.M., Macromolecules 5, 645 (1972).CrossRefGoogle Scholar
15.Harmon, J.P., Lee, S., and Li, J.C.M., J. Polym. Sci., Part A: Polym. Chem. 25, 3215 (1987).CrossRefGoogle Scholar
16.Ouyang, H. and Lee, S., J. Mater. Res. 11, 2794 (1997).CrossRefGoogle Scholar
17.Ouyang, H., Chen, C.C., Lee, S., and Yang, H., J. Polym. Sci., Part B: Polym. Phys. 36, 163 (1998).3.0.CO;2-A>CrossRefGoogle Scholar
18.Chou, K.F. and Lee, S., Polym. Sci. Eng. 40, 1025 (2000).CrossRefGoogle Scholar
19.Chou, K.F., Han, C.C., and Lee, S., Polym. Sci. Eng. 40, 1005 (2000).Google Scholar
20.Berge, A., Gudmensen, S., and Ulgelstad, J., Eur. Polym. J. 6, 981 (1970).CrossRefGoogle Scholar
21.Nguyen, T., Martin, J.W., Byrd, E., and Embree, N., Polym. Deg. Stab. 77, 1 (2002).CrossRefGoogle Scholar
22.Asada, T. and Onogi, S., J. Colloid Sci. 18, 784 (1963).CrossRefGoogle Scholar
23.Schult, K.A. and Paul, D.R., J. Polym. Sci., Polym. Phys. Ed. 34, 2805 (1996).3.0.CO;2-E>CrossRefGoogle Scholar
24.Barrie, J.A. and Machin, D., Trans. Faraday Soc. 67, 2971 (1971).Google Scholar
25.Kelkar, A.J. and Paul, D.R., J. Membrane Sci. 181, 199 (2001).CrossRefGoogle Scholar
26.Schneider, N.S., Dusablon, L.V., Snell, E.W., and Prosser, R.A., J. Macromol. Sci., Phys. B 3, 623 (1969).CrossRefGoogle Scholar
27.Vieth, W.R., Diffusion In and Through Polymers, Principles and Applications (Hanser Publishers, New York, 1991), pp. 2534.Google Scholar
28.van, G.K. der Wel and Adan, O.C.G., Prog. Org. Coat. 37, 1 (1999).Google Scholar
29.Mills, D.J. and Mayne, J.E.O., in Corrosion Control by Organic Coatings, edited by Leidheiser, H., Jr. (National Association of Corrosion Engineers, Houston, TX, 1981), p. 12.Google Scholar
30.Karyakina, M.I. and Kuzmak, W.E, Prog. Org. Coat. 18, 325 (1990).CrossRefGoogle Scholar
31.Nguyen, T., Hubbard, J., and Pommersheim, J., J. Coatings Technol. 68, 45 (1996).Google Scholar
32.Corti, H., Fernandez-Prini, R., and Gomez, D., Prog. Org. Coat. 10, 5 (1982).CrossRefGoogle Scholar
33.Richard, J., Polym. Adv. Technol. 6, 270 (1995).CrossRefGoogle Scholar
34.VanLandingham, M., Nguyen, T., Martin, J.W., and Byrd, E., J. Coatings Technol. 73, 43 (2001).CrossRefGoogle Scholar
35.Gu, X., Raghavan, D., Nguyen, T., and VanLandingham, M., Polym. Degrad. Stab. 74, 139 (2001).CrossRefGoogle Scholar
36.Raghavan, D., Gu, X., VanLandingham, M., and Nguyen, T., J. Polym. Sci., Polym. Phys. 39, 1460 (2001).CrossRefGoogle Scholar
37.Hubbard, J.B., Nguyen, T., and Bentz, D., J. Chem. Phys. 96, 3177 (1992).CrossRefGoogle Scholar
38.Thiel, P.A. and Madey, T.E., Surface Sci. Rep. 7, 211 (1987).CrossRefGoogle Scholar
39.Pimentel, G.C. and McClellan, A.L., The Hydrogen Bond (W.H. Freeman and Co., San Francisco, CA, 1960), pp. 212214.Google Scholar
40.Musto, P., Ragosta, G., and Mascia, L., Chem. Mat. 12, 1331 (2000).CrossRefGoogle Scholar