Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-25T07:22:38.023Z Has data issue: false hasContentIssue false

Quantitative investigation of titanium/amorphous-silicon multilayer thin film reactions

Published online by Cambridge University Press:  31 January 2011

R. R. De Avillez
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
L. A. Clevenger
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
C. V. Thompson
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
K. N. Tu
Affiliation:
IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598
Get access

Abstract

Growth of amorphous-titanium-silicidc and crystalline C49 TiSi2 in titanium/amorphous-silicon multilayer films was investigated using a combination of differential scanning calorimetry (DSC), thin film x-ray diffraction, Auger depth profiling, and cross-sectional transmission electron microscopy. The multilayer films had an atomic concentration ratio of 1Ti to 2Si and a modulation period of 30 nm. In the as-deposited condition, a thin amorphous-titanium-silicide layer was found to exist between the titanium and silicon layers. Heating the multilayer film from room temperature to 700 K caused the release of an exothermic heat over a broad temperature range and an endothermic heat over a narrow range. The exothermic hump was attributed to thickening of the amorphous-titanium silicide layer, and the endothermic step was attributed to the homogenization and/or densification of the amorphous-silicon and amorphous-titanium-silicide layers. An interpretation of previously reported data for growth of amorphous-titanium-silicide indicates an activation energy of 1.0 ± 0.1 eV and a pre-exponential coefficient of 1.9 × 10−7 cm2/s. Annealing at high temperatures caused formation of C49 TiSi2 at the amorphous-titanium-silicide/amorphous-silicon interfaces with an activation energy of 3.1 ± 0.1 eV. This activation energy was attributed to both the nucleation and the early stages of growth of C49 TiSi2. The heat of formation of C49 TiSi2 from a reaction of amorphous-titanium-silicide and crystalline titanium was found to be –25.8 ± 8.8 kJ/mol and the heat of formation of amorphous-titanium-silicide was estimated to be –130.6 kJ/mol.

Type
Articles
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Murarka, S. P., Silicides for VLSI Applications (Academic Press, New York, 1983).Google Scholar
2Holloway, K. and Sinclair, R., J. Appl. Phys. 61, 1359 (1987).CrossRefGoogle Scholar
3Butz, R., Rubloff, G.W., Tan, T.Y., and Ho, P. S., Phys. Rev. B 30, 5421 (1984)Google Scholar
4Rubloff, G.W., Tramp, R. M., and van Loenen, E. J., Appl. Phys. Lett. 48, 1600 (1986).Google Scholar
5Clevenger, L.A., Thompson, C.V., Judas, A., and Tu, K. N., First MRS International Meeting on Advanced Materials 10, 431 (1989).Google Scholar
6Clevenger, L.A., Thompson, C.V., Cammarata, R. C., and Tu, K. N., Appl. Phys. Lett. 52, 795 (1988).CrossRefGoogle Scholar
7Tu, K. N., Chu, W. K., and Mayer, J.W., Thin Solid Films 25, 403 (1975).CrossRefGoogle Scholar
8Clevenger, L. A., Thompson, C.V., Cammarata, R. C., and Tu, K. N., Mater. Res. Symp. Proc. 103, 191 (1988).CrossRefGoogle Scholar
9Nathan, M., J. Appl. Phys., 63, 5539 (1988).Google Scholar
10De Avillez, R. R., Clevenger, L. A., and Thompson, C.V., J. Mater. Res. 4 (5), 1057 (1989).CrossRefGoogle Scholar
11Beyers, R. and Sinclair, R., J. Appl. Phys. 57, 5240 (1985).CrossRefGoogle Scholar
I2Kissinger, H.E., Anal. Chem. 29, 1702 (1957).Google Scholar
13Boswell, P. G., J. Thermal. Anal. 18, 353 (1980).Google Scholar
14Coffey, K.R., Clevenger, L.A., Barmak, K., Rudman, D.A., and Thompson, C.V., Appl. Phys. Lett. 55, 852 (1989).CrossRefGoogle Scholar
15Holloway, K. and Sinclair, R., J. Less-Comm. Met. 140, 139 (1988).CrossRefGoogle Scholar
16Cotts, E. J., Meng, W. J., and Johnson, W. L., Phys. Rev. Lett. 57, 2295 (1986).Google Scholar
17Chambers, S. A., Hill, D. M., Xu, F., and Weaver, J. H., Phys. Rev. B 35, 634 (1987).Google Scholar
18Tanner, L. E., Acta Metall. 28, 1805 (1980).Google Scholar
19Tanner, L. E. and Ray, R., Scripta Metall. 11, 783 (1977).CrossRefGoogle Scholar
20Turnbull, D., TMS-AIME 221, 422 (1961).Google Scholar
21Hung, L. S., Gyulai, J., Mayer, J.W., Lau, S. S., and Nicolet, M. A., J. Appl. Phys. 54, 5076 (1983).Google Scholar
22Hultgren, R., Orr, R. L., Anderson, P. D., and Kelley, K. K., Selected Values of Thermodynamic Properties of Metals and Alloys (J. Wiley, New York, 1963).Google Scholar
23Donovan, E.P., Spaepen, F., Turnbull, D., Poate, J. M., and Jacobson, D.C., J. Appl. Phys. 57, 4208 (1985).Google Scholar