Skip to main content Accessibility help
×
Home

Quantifying the progression of dynamic recrystallization in severe shear deformation at high strain rates

  • Sepideh Abolghasem (a1), Saurabh Basu (a1) and M. Ravi Shankar (a1)

Abstract

This paper examines the onset and progression of dynamic recrystallization (DRX) phenomena under shear deformation conditions characterized by strains >1 and strain rates >102/s by purposing large strain machining (LSM) as a test of microstructure response. To accomplish this, samples are created using LSM while characterizing the deformation using digital image correlation and infrared thermography. Microstructural consequences resulting from the characterized thermomechanical conditions are examined using electron backscattered diffraction. The progression of DRX is measured by identifying the threshold of grain orientation spread demarcating the onset of recrystallization and utilizing this threshold to segregate the microstructure and quantify the extent of DRX. A model for the onset of DRX as a function of thermomechanics of deformation is presented. This characterization can help understand surface microstructures resulting from shear-based manufacturing processes, such as turning, milling, shaping, etc., that are created under analogous thermomechanical conditions.

Copyright

Corresponding author

a)Address all correspondence to this author. e-mail: ravishm@pitt.edu

References

Hide All
1.Mishra, A., Kad, B.K., Gregori, F., and Meyers, M.A.: Microstructural evolution in copper subjected to severe plastic deformation: Experiments and analysis. Acta Mater. 55(1), 13 (2007).
2.Valiev, R.Z. and Langdon, T.G.: Principles of equal-channel angular pressing as a processing tool for grain refinement. Prog. Mater. Sci. 51(7), 881 (2006).
3.Kawasaki, M., Ahn, B., and Langdon, T.G.: Microstructural evolution in a two-phase alloy processed by high-pressure torsion. Acta Mater. 58(3), 919 (2010).
4.Kuzel, R., Janecek, M., Matej, Z., Cizek, J., Dopita, M., and Srba, O.: Microstructure of equal-channel angular pressed Cu and cu-Zr samples studied by different methods. Metall. Mater. Trans. A 41(5), 1174 (2010).
5.Shankar, M.R., Rao, B.C., Lee, S., Chandrasekar, S., King, A.H., and Compton, W.D.: Severe plastic deformation (SPD) of titanium at near-ambient temperature. Acta Mater. 54(14), 3691 (2006).
6.Amouyal, Y., Divinski, S.V., Klinger, L., and Rabkin, E.: Grain boundary diffusion and recrystallization in ultrafine grain copper produced by equal channel angular pressing. Acta Mater. 56(19), 5500 (2008).
7.Molodova, X., Gottstein, G., Winning, M., and Hellmig, R.J.: Thermal stability of ECAP processed pure copper. Mater. Sci. Eng., A 460461(15), 204 (2007).
8.Gottstein, G.: Physikalische Grundlagen der Metallkunde, 2nd ed. (Springer, Berlin, Germany, 2001).
9.Cahn, R.W. and Haasen, P.: Physical Metallurgy, Part 2, 3rd ed. (Physics Publishing, North Holland, 1983).
10.Humphreys, F.J. and Hatherly, M.: Recrystallization and Related Annealing Phenomena, 2nd ed. (Elsevier Science Ltd, London, 2002).
11.Sakai, T. and Jonas, J.J.: Overview no. 35 dynamic recrystallization: Mechanical and microstructural considerations. Acta Metall. 32(2), 189 (1984).
12.Montheillet, F. and Le Coze, J.: Influence of purity on the dynamic recrystallization of metals and alloys. Phys. Status Solidi A 189(1), 51 (2002).
13.Andrade, U., Meyers, M.A., Vecchio, K.S., and Chokshi, A.H.: Dynamic recrystallization in high-strain, high-strain-rate plastic deformation of copper. Acta Metall. Mater. 42(9), 3183 (1994).
14.Nicholas, T.: Tensile testing at high rates of strain. Exp. Mech. 21, 177 (1981).
15.Lindholm, S., Nagy, A., Johnson, G.R., and Hoegfeldt, J.M.: Large strain, high strain rate testing of copper. J. Eng. Mater. Technol. 102(4), 376 (1980).
16.Gray, G.T. III: Mechanical Testing and Evaluation, 10th ed. (ASM Handbook, Ohio, 2000).
17.McQueen, H.J. and Bergerson, S.: Dynamic recrystallization of copper during hot torsion. Met. Sci. 6, 25 (1972).
18.McQueen, H.J.: Materials Technology (An Inter-American Approach ASME, New York, 1968), pp. 379, 388.
19.Jonas, J.J., Sellars, C.M., and Tegart, W.J.McG.: Strength and structure under hot-working conditions. Metall. Rev. 14, 1 (1969).
20.Sellars, C.M. and Tegart, W.J.McG.: On the mechanism of hot deformation. Acta Metall. 14(9), 1136 (1966).
21.Sah, J.P., Richardson, G.J., and Sellars, C.M.: Recrystallization during hot deformation of Nickel. J. Aust. Inst. Met. 14, 292 (1969).
22.Hines, J.A. and Vecchiot, K.S.: Recrystallization kinetics within adiabatic shear bands. Acta Mater. 45(2), 635 (1997).
23.Xu, Y.B., Zhong, W.L., Chen, Y.J., Shen, L.T., Liu, Q., Bai, Y.L., and Meyers, M.A.: Shear localization and recrystallization in dynamic deformation of 8090 Al–Li alloy. Mater. Sci. Eng., A 299, 287 (2001).
24.Meyers, M.: Dynamic Behavior of Materials (John Wiley & Sons, New York, 1994).
25.Meyers, M.A., Subhash, G., Kad, B.K., and Prasad, L.: Evolution of microstructure and shear-band formation in α-hcp titanium. Mech. Mater. 17, 175 (1994).
26.Chokshi, A.H. and Meyers, M.A.: The prospects for superplasticity at high strain rates: Preliminary considerations and an example. Scr. Metall. Mater. 24, 605 (1990).
27.Shekhar, S., Cai, J., Basu, S., Abolghasem, S., and Shankar, M.R.: Effect of strain-rate in severe plastic deformation on microstructure refinement and stored energies. J. Mater. Res. 26, 395 (2011).
28.Akbari, G.H., Sellars, C.M., and Whiteman, J.A.: Microstructural development during warm rolling of an if steel. Acta Mater. 45(12), 5047 (1997).
29.Baxter, G.J., Dulv, D., Orsetti Rossi, P.L., Sellars, C.M., Whiteman, J.A., Shercliff, H.R., and Ashby, M.F.: Microstructural and crystallographic aspects of recrystallization. In 16th Riso International Symposium on Material Science, Microstructural and Crystallographic Aspects of Recrystallization, edited by Hansen, N., Liu, Y.L., Jensen, D.J., and Ralph, B. (RISO National Laboratory, Roskilde, 1995), p. 267.
30.Haessner, I. and Hofmann, S.: Recrystallization of Metallic Materials (Riederer Verlag, Stuttgart, Germany, 1978).
31.Gerber, P., Tarasiuk, J., Chauveau, T., and Bacroix, B.: A quantitative analysis of the evolution of texture and stored energy during annealing of cold rolled copper. Acta Mater. 51(20), 6359 (2003).
32.Mitsche, S., Poelt, P., and Sommitsch, C.: Recrystallization behaviour of the nickel-based alloy 80 A during hot forming. J. Microsc. 227(3), 267 (2007).
33.Tarasiuk, J., Gerber, P., and Bacroix, B.: Estimation of recrystallized volume fraction from EBSD data. Acta Mater. 50, 1467 (2002).
34.Poelt, P., Sommitsch, C., Mitsche, S., and Walter, M.: Dynamic recrystallization of Ni-base alloys—experimental results and comparisons with simulations. Mater. Sci. Eng., A 420, 306 (2006).
35.Humphreys, F.J.: Review grain and subgrain characterisation by electron backscatter diffraction. J. Mater. Sci. 36, 3833 (2001).
36.McNelley, T.R., Zhilyaev, A.P., Swaminathan, S., Su, J., and Sarath Menon, E.: Application of EBSD methods to severe plastic deformation (SPD) and related processing methods. Chapter in Electron Backscatter Diffraction in Materials Science, edited by Schwartz, A.J., Kumar, M., Adams, B.L. and Field, D.P. (Kluwer Academic Plenum Publishers, New York, 2000).
37.Cheong, S. and Weiland, H.: Understanding a microstructure using GOS (grain orientation spread) and its application to recrystallization study of hot deformed Al-Cu-Mg alloys. Mater. Sci. Forum 558559, 153 (2007).
38.Lim, C.V.S.: Length scale effect on the microstructure evolution of Cu Layers in a Roll-Bonded CuNb composite, Ph.D. Thesis, Carnegie Mellon University, Pittsburgh, PA, 2008.
39.Alvi, M.H., El-Dasher, B.S., and Rollett, A.D.: Hot deformation of aluminum alloys III. ed. Jin, Z., Beaudoin, A., Bieler, T., and Radhakrishnan, B. (TMS, Warrendale, PA (2003)), p. 3, 12.
40.Vandermeer, R.A. and Juul Jensen, D.: Recrystallization in hot vs cold deformed commercial aluminum: A microstructure path comparison. Acta Mater. 51, 3005 (2003).
41.Alvi, M.H., Cheong, S., Weiland, H., and Rollett, A.D.: 1st International Symposium of Metallurgical Modelling of Aluminum Alloys, Pittsburgh, PA, 2003; p. 183.
42.Alvi, M.H., Cheong, S., Weiland, H., and Rollett, A.D.: Recrystallization and texture development in hot rolled 1050 aluminum. Mater. Sci. Forum 467470, 357 (2004).
43.Mitsche, S., Poelt, P., Sommitsch, C., and Walter, M.: Quantification of the recrystallized fraction in a nickel-base-alloy from EBSD-data. Microsc. Microanal. 9, 344 (2003).
44.Mitsche, S., Sommitsch, C., Pölt, P., and Kleber, S.: Recrystallization Behaviour of the Nickel based alloy 80 A during hot forming (Proc. 13th Conf. And Workshop on electron backscatter diffraction, University of Oxford, United Kingdom, Royal Microscopical Society (RMS), 2006).
45.Abolghasem, S., Basu, S., Shekhar, S., Cai, J., and Shankar, M.R.: Mapping subgrain sizes resulting from severe simple shear deformation. Acta Mater. 60, 376 (2012).
46.Kuhlmann-Wilsdorf, D.: A critical test on theories of work-hardening for the case of drawn iron wire. Met. Trans. 1, 3173 (1970).
47.Kuhlmann-Wilsdorf, D.: Work hardenning in tension and fatigue, in edited by Thompson, A.W. (The Metallurgical Society of AIME: New York, 1977).
48.Nes, E.: Modeling of work hardening and stress saturation in FCC metals. Prog. Mater. Sci. 41, 129 (1998).
49.Oxley, P.L.B. and Hasting, W.F.: Predicting the strain rate in the zone of intense shear in which the chip is formed in machining from the dynamic flow stress properties of the work material and the cutting conditions. Proc. R. Soc. London, Ser. A 356, 395 (1977).
50.Lee, S., Hwang, J., Shankar, M.R., Chandrasekar, S., and Compton, W.D.: Large strain deformation field in machining. Metall. Mater. Trans. A 37, 1633 (2006).
51.Raybould, D. and Sheppard, T.: Axisymmetric extrusion: The effect of temperature rise and strain rate on the activation enthalpy and material constants of some aluminum alloys and their relation to recrystallization, substructure and subsequent mechanical properties. J. Inst. Met. Mar. 101, 65 (1973).
52.Swaminathan, S., Shankar, M.R., Rao, B.C., Compton, W.D., Chandrasekar, S., King, A.H., and Trumble, K.P.: Severe plastic deformation (SPD) and nanostructured materials by machining. J. Mater. Sci. 42, 1529 (2007).
53.Campbell, C.E., Bendersky, L.A., Boettinger, W.J., and Ivester, R.: Microstructural characterization of Al-7075-T651 chips and work pieces produced by high-speed machining. Mater. Sci. Eng., A 430, 15 (2006).
54.Cerreta, E.K., Frank, I.J., Gray, G.T. III, Trujillo, C.P., Korzekwa, D.A., and Dougherty, L.M.: The influence of microstructure on the mechanical response of copper in shear. Mater. Sci. Eng. 501(1), 207 (2009).
55.Adibi-Sedeh, A.H., Madhavan, V., and Bahr, B.J.: Extension of oxley’s analysis of machining to use different material models. J. Manuf. Sci. Eng. 125, 656 (2003).
56.Shekhar, S., Cai, J., Basu, S., Abolghasem, S., and Shankar, M.R.: Effect of severe plastic deformation in machining elucidated via rate-strain-microstructure mappings. J. Manuf. Sci. Eng. 134, 3100831011 (2012).
57.Zener, C. and Hollomon, J.H.: Effect of strain rate upon plastic flow of steel. J. Appl. Phys. 15, 22 (1944).
58.Zhao, W.S., Tao, N.R., Guo, J.Y., Lu, Q.H., and Lu, K.: High density nano-scale twins in Cu induced by dynamic plastic deformation. Scr. Mater. 53, 745 (2005).
59.Ma, Z.Y. and Tjong, S.C.: High temperature creep behavior of in-situ TiB2 particulate reinforced copper-based composite. Mater. Sci. Eng., A 284, 70 (2000).
60.Randle, V. and Engler, O.: Introduction to texture analysis: Macrotexture, microtexture and orientation mapping (Gordon and Breach Science Publishers, Amsterdam, 2000).
61.Gao, H. and Huang, Y.: Geometrically necessary dislocation and size-dependent plasticity. Scr. Mater. 48, 113 (2003).
62.Wright, S.I.: Proceedings of the 12th International Conference on Textures. Montreal, Canada (1999), p. 104, 109.
63.Alvi, M.H.: Recrystallization kinetics and microstructural evolution in hot rolled aluminum alloys. Ph.D. Thesis, Carnegie Mellon University, Pittsburgh, PA, 2005.
64.Jazaeri, H. and Humphreys, F.J.: Quantifying recrystallization by electron backscatter diffraction. J. Microsc. 213, 241 (2003).
65.Engler, O. and Huh, M.: Evolution of the cube texture in high purity aluminum capacitor foils by continuous recrystallization and subsequent grain growth. Mater. Sci. Eng., A 271, 371 (1999).
66.Jazaeri, H. and Humphreys, F.J.: The effect of initial grain size on transition from discontinuous to continuous recrystallization in a highly cold rolled Al–Fe–Mn alloy. Mater. Sci. Forum 396, 551 (2002).
67.Ahlborn, H., Hornbogen, E., and Koster, U.: Recrystallisation mechanism and annealing texture in aluminium-copper alloys. J. Mater. Sci. 4, 944 (1969).
68.Abrams, H.: Grain size measurement by the intercept method. Metallography 4, 59 (1971).

Quantifying the progression of dynamic recrystallization in severe shear deformation at high strain rates

  • Sepideh Abolghasem (a1), Saurabh Basu (a1) and M. Ravi Shankar (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed