Skip to main content Accessibility help

Quantification of hardening in Fe–Mn master alloys prepared by a mechanical alloying process via nanoindentation experiments

  • José Sicre-Artalejo (a1), Mónica Campos (a1), Jon M. Molina-Aldareguía (a2) and José M. Torralba (a3)


During the mechanical alloying of a prealloyed Fe–Mo and Mn powder, a large amount of energy is involved because of continuous collisions between the grinding media and the powder. The energy is transformed into massive plastic deformation and solid solution formation. Both phenomena increase in the hardness of the milled particles. To quantify the contribution of both effects to the hardening, nanoindentation experiments were performed on the as-milled powder and after an annealing treatment, based on the assumption that the thermal process would eliminate the lattice distortions due to plastic deformation. When the indentation profile was measured, a significant pileup around the perimeter of the indentation track was observed; therefore, it was necessary to measure the actual amount of contact area by atomic force microscopy. Thus, parameters of mechanical powders can be determined, giving to the conclusion that 40% of the hardening induced can be attributed to the plastic strain.


Corresponding author

a)Address all correspondence to this author. e-mail:


Hide All
1.Anonymous, : Oil atomisation puts a different face on iron alloy powders. Met. Powder Rep. 59(10), 26 (2004).
2.Suryanarayana, C.: Mechanical alloying and milling. Prog. Mater. Sci. 46(1–2), 1 (2001).
3.Morimoto, H., Nakai, M., Tatsumisago, M., and Minami, T.: Mechanochemical synthesis and anode properties of SnO-based amorphous materials. J. Electrochem. Soc. 146(11), 3970 (1999).
4.Warris, C.J. and McCormick, P.G.: Mechanochemical processing of refractory pyrite. Miner. Eng. 10(10), 1119 (1997).
5.Ding, J., Miao, W.F., McCormick, P.G., and Street, R.: Mechanochemical synthesis of ultrafine Fe powder. Appl. Phys. Lett. 67(25), 3804 (1995).
6.Kosmac, T. and Courtney, T.H.: Milling and mechanical alloying of inorganic nonmetallics. J. Mater. Res. 7(6), 1519 (1992).
7.Albanomu, L., Thummler, F., and Zapf, G.: High-strength sintered iron-base alloys by using transition-metal carbides. Powder Metall. 16(32), 236 (1973).
8.Hoffmann, G. and Dalal, K.: Development and present situation of low alloyed PM steels using MCM and MVM master alloys. Powder Metall. Int. 11(4), 177 (1979).
9.Banerjee, S., Schlieper, G., Thummler, F., and Zapf, G.: New results in the master alloy concept for high strength sintered steels. Prog. Powder Metall. 13, 143 (1980).
10.Oro, R., Campos, M., Gierl, C., Danninger, H., and Torralba, J.M.: Atmosphere effects on liquid phase sintering of PM steels modified with master alloy additions, in Proceedings of World Congress in PM (EPMA, Florence, Italy, 2010).
11.Moumeni, H., Alleg, S., and Greneche, J.M.: Structural properties of Fe50Co50 nanostructured powder prepared by mechanical alloying. J. Alloy. Comp. 386(1–2), 12 (2005).
12.Sicre-Artalejo, J., Campos, M., Marcu, T., and Torralba, J.M.: Modification of low alloyed steels by manganese additions. Prog. Powder Metall. 53436, 697 (2007).
13.Campos, M., Sicre-Artalejo, J., Molina-Aldareguia, J.M., and Torralba, J.M.: Comprehensive characterization of mechanical properties of heat treated low alloyed steels with Mn added via mechanical alloying, in World congress on powder metallurgy and particulate materials (Metal Powder Industries Federation, Washington, DC, 2008).
14.Gaffet, E., Malhouroux, N., and Abdellaoui, M.: Far from equilibrium phase transition induced by solid-state reaction in the Fe-Si system. J. Alloy. Comp. 194(2), 339 (1993).
15.Eleskandarany, M.S., Ahmed, H.A., Sumiyama, K., and Suzuki, K.: Mechanically assisted solid-state hydrogenation for formation of nanocrystalline NiTiH3. J. Alloy. Comp. 218(1), 36 (1995).
16.Yin, F., Shigematsu, T., Nakanishi, N., Osawa, Y., and Sato, A.: Mechanical milling induced phase transformation in orthorhombic nanocrystalline MnP compound. Nanostruct. Mater. 8(5), 587 (1997).
17.Shantha, K., Subbanna, G.N., and Varma, K.B.R.: Mechanically activated synthesis of nanocrystalline powders of ferroelectric bismuth vanadate. J. Solid State Chem. 142(1), 41 (1999).
18.Petrovic, P., Brovko, I., Sepelak, V., Stevulova, N., and Hreha, S.: Properties of the nanocrystalline Finemet alloys prepared by mechanochemical way. Acta Physica Slovaca 48(6), 703 (1998).
19.Grandi, T.A., dos Santos, V.H.F., and de Lima, J.C.: Role of interfacial structure in nanostructured elemental metals: A new thermo-mechanical process for the preparation of nanostructured binary alloys. Solid State Commun. 110(12), 673 (1999).
20.Guerrero-Paz, J. and Jaramillo-Vigueras, D.: Nanometric grain formation in ductile powders by low-energy ball milling. Nanostruct. Mater. 11(8), 1123 (1999).
21.Pathak, S., Stojakovic, D., Doherty, R., and Kalidindi, S.R.: Importance of surface preparation on the nano-indentation stress-strain curves measured in metals. J. Mater. Res. 24(3), 1142 (2009).
22.Schuh, C.A.: Nanoindentation studies of materials. Mater. Today 9(5), 32 (2006).
23.Fischer-Cripps, A.C.: Depth-sensing nano-indentation, in High-Pressure Surface Science and Engineering, edited by Gogotsi, Y. and Domnich, V. (Institute of Physics Publishing, Philadelphia, 2004) pp. 295320.
24.Fischer-Cripps, A.C.: A review of analysis methods for sub-micron indentation testing. Vacuum 58(4), 569 (2000).
25.Huang, H., Wu, Y.Q., Wang, S.L., He, Y.H., Zou, J., Huang, B.Y., and Liu, C.T.: Mechanical properties of single crystal tungsten microwhiskers characterized by nanoindentation. Mater. Sci. Eng., A 523(1–2), 193 (2009).
26.Aguilar, C., Ordóñez, S., Marín, J., Castro, F., and Martínez, V.: Study and methods of analysis of mechanically alloyed Cu-Mo powders. Mater. Sci. Eng., A 464(1–2), 288 (2007).
27.Rico, A., Garrido, M.A., and Rodriguez, J.: The problem of determining Young’s modulus and hardness of high stiff ceramics by nanoindentation. Bol. Soc. Esp. Ceram. Vidrio 47(2), 110 (2008).
28.Yuan, Y.H. and Verma, R.: Mechanical properties of stratum corneum studied by nano-indentation, in Spatially Resolved Characterization of Local Phenomena in Materials and Nanostructures, Vol. 738, edited by Bonnell, D.A., Piqueras, J., Shreve, A.P., and Zypman, F. (Unilever Research, Edgewater, NJ, 2003), p. 265.
29.Tang, C.G., Li, Y. and Zeng, K.Y.: Characterization of mechanical properties of a Zr-based metallic glass by indentation techniques. Mater. Sci. Eng., A 384(1–2), 215 (2004).
30.Oliver, W.C. and Pharr, G.M.: An improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7(6), 1564 (1992).
31.Sneddon, I.N.: The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile. Int. J. Eng. Sci. 3(1), 47 (1965).
32.Alkorta, J., Martinez-Esnaola, J.M., and Sevillano, J.G.: Absence of one-to-one correspondence between elastoplastic properties and sharp-indentation load-penetration data. J. Mater. Res. 20(2), 432 (2005).
33.Jakes, J.E., Frihart, C.R., Beecher, J.F., Moon, R.J., and Stone, D.S.: Experimental method to account for structural compliance in nanoindentation measurements. J. Mater. Res. 23(4), 1113 (2008).
34.Lutterotti, L.: MAUD. CPD Newsletter (IUCr), 2000.
35.Alkorta, J. and Sevillano, J.G.: Measuring the strain rate sensitivity by instrumented indentation. Application to an ultrafine grain (equal channel angular-pressed) eutectic Sn-Bi alloy. J. Mater. Res. 19(1), 282 (2004).
36.Alkorta, J. and Sevillano:, J.G.Hardness measurement of solids by means of nanoindentation. Bol. Soc. Esp. Ceram. Vidrio 44(5), 259 (2005).
37.Koch, C.C. and Whittenberger, J.D.: Mechanical milling/alloying of intermetallics. Intermetallics 4(5), 339 (1996).
38.Bull, S.J., Chalker, P.R., Johnston, C., and Cooper, C.V.: Indentation response of diamond thin-films. Diamond Relat. Mater. 4(1), 43 (1994).
39.Bull, S.J., Page, T.F., and Yoffe, E.H.: An explanation of the indentation size effect in ceramics. Philos. Mag. Lett. 59(6), 281 (1989).
40.Armstrong, R.W.: Dislocation pile-ups: From {1 1 0} cracking in MgO to model strength evaluations. Mater. Sci. Eng., A 409(1–2), 24 (2005).
41.Kim, J.K., Chen, L., Kim, H.S., Kim, S.K., Estrin, Y., and De Cooman, B.C.: On the tensile behavior of high-manganese twinning-induced plasticity steel. Metall. and Mater. Trans. A. 40(13), 3147 (2009).
42.Hua, D., Hao, D., Xin, Z., Zhengyou, T., and Ping, Y.: Study on microstructures and mechanical properties of high manganese steels with TRIP/TWIP effects. Steel Res. Int. 80(9), 623 (2009).


Quantification of hardening in Fe–Mn master alloys prepared by a mechanical alloying process via nanoindentation experiments

  • José Sicre-Artalejo (a1), Mónica Campos (a1), Jon M. Molina-Aldareguía (a2) and José M. Torralba (a3)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed