Skip to main content Accessibility help
×
Home

Pushing the detection limit of thin film magnetoelectric heterostructures

  • Volker Röbisch (a1), Sebastian Salzer (a2), Necdet O. Urs (a1), Jens Reermann (a2), Erdem Yarar (a1), André Piorra (a1), Christine Kirchhof (a1), Enno Lage (a1), Michael Höft (a2), Gerhard U. Schmidt (a2), Reinhard Knöchel (a2), Jeffrey McCord (a1), Eckhard Quandt (a1) and Dirk Meyners (a1)...

Abstract

Composite magnetoelectrics implemented as thin film heterostructures are discussed in view of their applicability as highly sensitive magnetic field sensors. Here, either PZT or AlN served as piezoelectric component. The magnetostrictive phase consisted of layer systems based on FeCo or (Fe90Co10)78Si12B10. All functional layers were deposited with thicknesses of a few micrometers on Si cantilever structures with typical lateral dimensions of 25 mm by 2.2 mm. Magnetoelectric coefficients as large as 6900 V/cm Oe and a limit of detection as low as 1 pT/(Hz)1/2 were measured. Currently, the best result demonstrates a detection limit of 500 fT/(Hz)1/2 at 958 Hz frequency using a set of two sensors for external noise suppression. A frequency conversion technique is proposed to broaden the applicability of resonant magnetoelectric sensors to a wider frequency range. Finally, the achieved sensor performance is evaluated with regard to typical magnetic field amplitudes in medical applications.

Copyright

Corresponding author

a) Address all correspondence to this author. e-mail: dm@tf.uni-kiel.de

Footnotes

Hide All

Contributing Editor: Michael E. McHenry

This paper has been selected as an Invited Feature Paper.

Footnotes

References

Hide All
1. Nan, C-W., Bichurin, M.I., Dong, S., Viehland, D., and Srinivasan, G.J.: Multiferroic magnetoelectric composites: Historical perspective, status, and future directions. Appl. Phys. 103, 031101 (2008).
2. Nan, T., Hui, Y., Rinaldi, M., and Sun, N.: Self-biased 215 MHz magnetoelectric NEMS resonator for ultra-sensitive DC magnetic field detection. Sci. Rep. 3, 1985 (2013).
3. Zhao, P., Zhao, Z., Hunter, D., Suchoski, R., Gao, C., Mathews, S., Wuttig, M., and Takeuchi, I.: Fabrication and characterization of all-thin-film magnetoelectric sensors. Appl. Phys. Lett. 94, 243507 (2009).
4. Lee, D.G., Kim, S.M., Yoo, Y.K., Han, J.H., Chun, D.W., Kim, Y-C., Kim, J., Hwang, K.S., Kim, T.S., Jo, W.W., Kim, H., Song, S-H., and Lee, J.H.: Ultra-sensitive magnetoelectric microcantilever at a low frequency. Appl. Phys. Lett. 101, 182902 (2012).
5. Lage, E., Kirchhof, C., Hrkac, V., Kienle, L., Jahns, R., Knöchel, R., Quandt, E., and Meyners, D.: Exchange biasing of magnetoelectric composites. Nat. Mater. 11, 523529 (2012).
6. Piorra, A.: Ferroelektrische Schichten für magnetoelektrische Komposite (Ferroelectric Films for Magnetoelectric Composites). PhD Thesis, Christian-Albrechts-Universität zu Kiel, Germany, January 2014.
7. Ryu, J., Priya, S., Carazo, A.V., Uchino, K., and Kim, H-E.: Effect of the magnetostrictive layer on magnetoelectric properties in lead zirconate titanate/terfenol-D laminate composites. J. Am. Ceram. Soc. 84, 29052908 (2001).
8. Dong, S., Zhai, J., Li, J., and Viehland, D.: Near-ideal magnetoelectricity in high-permeability magnetostrictive/piezofiber laminates with a (2-1) connectivity. Appl. Phys. Lett. 89, 252904 (2006).
9. Onuta, T-D., Wang, Y., Long, C.J., and Takeuchi, I.: Energy harvesting properties of all-thin-film multiferroic cantilevers. Appl. Phys. Lett. 99, 203506 (2011).
10. Kirchhof, C., Krantz, M., Teliban, I., Jahns, R., Marauska, S., Wagner, B., Knöchel, R., Gerken, M., Meyners, D., and Quandt, E.: Giant magnetoelectric effect in vacuum. Appl. Phys. Lett. 102, 232905 (2013).
11. Jahns, R., Greve, H., Woltermann, E., Lage, E., Quandt, E., and Knöchel, R.: Magnetoelectric sensors for biomagnetic measurements. In 2011 IEEE International Workshop on Medical Measurements and Applications Proceedings (MeMeA) (held in Bari, Italy, May 30–31); pp. 107110.
12. Jahns, R., Greve, H., Woltermann, E., Quandt, E., and Knöchel, R.H.: Noise performance of magnetometers with resonant thin-film magnetoelectric sensors. IEEE Trans. Instrum. Meas. 60, 2995 (2011).
13. Yarar, E., Hrkac, V., Zamponi, C., Piorra, A., Kienle, L., and Quandt, E.: Low temperature aluminum nitride thin films for sensory applications. AIP Adv. 6(7), 075115 (2016).
14. Salzer, S., Jahns, R., Piorra, A., Teliban, I., Reermann, J., Höft, M., Quandt, E., and Knöchel, R.: Tuning fork for noise suppression in magnetoelectric sensors. Sens. Actuators, A 237, 9195 (2016).
15. Jahns, R., Greve, H., Woltermann, E., Quandt, E., and Knöchel, R.: Sensitivity enhancement of magnetoelectric sensors through frequency-conversion. Sens. Actuators, A. 183, 1621 (2012).
16. Shin, K-H., Inoue, M., and Arai, K-I.: Elastically coupled magneto-electric elements with highly magnetostrictive amorphous films and PZT substrates. Smart Mater. Struct. 9, 357361 (2000).
17. Greve, H., Woltermann, E., Quenzer, H-J., Wagner, B., and Quandt, E.: Giant magnetoelectric coefficients in (Fe90Co10)78Si12B10-AlN thin film composites. Appl. Phys. Lett. 96, 182501 (2010).
18. Zabel, S., Kirchhof, C., Yarar, E., Meyners, D., Quandt, E., and Faupel, F.: Phase modulated magnetoelectric delta-E effect sensor for sub-nano Tesla magnetic fields. Appl. Phys. Lett. 107, 152402 (2015).
19. Piorra, A., Jahns, R., Teliban, I., Gugat, J.L., Gerken, M., Knöchel, R., and Quandt, E.: Magnetoelectric thin film composites with interdigital electrodes. Appl. Phys. Lett. 103, 032902 (2013).
20. Röbisch, V., Yarar, E., Urs, N.O., Teliban, I., Knöchel, R., McCord, J., Quandt, E., and Meyners, D.: Exchange biased magnetoelectric composites for magnetic field sensor application by frequency conversion. J. Appl. Phys. 117, 17B513 (2015). (see also Supplementary Material).
21. Xing, Z., Zhai, J., Li, J., and Viehland, D.: Investigation of external noise and its rejection in magnetoelectric sensor design. J. Appl. Phys. 106, 024512 (2009).
22. Zhuang, X., Cordier, C., Saez, S., Sing, M.L.C., Dolabdjian, C., Gao, J., Li, J.F., and Viehland, D.: Theoretical analysis of the intrinsic magnetic noise spectral density of magnetostrictive-piezoelectric laminated composites. J. Appl. Phys. 109, 124512 (2011).
23. Li, M., Zhiguang, W., Wang, Y., Li, J., and Viehland, D.: Giant magnetoelectric effect in self-biased laminates under zero magnetic field. Appl. Phys. Lett. 102, 082404 (2013).
24. Yang, S-C., Park, C-S., Cho, K-H., and Priya, S.: Self-biased magnetoelectric response in three-phase laminates. J. Appl. Phys. 108, 093706 (2010).
25. Tadahiko, K. and Isao, S.: Self Bias Magnetostrictive Material. Japanese Patent 09083037 A, March 28, 1997.
26. Zhang, J., Li, P., Wen, Y., He, W., Yang, A., Wang, D., Yang, C., and Lu, C.: Giant self-biased converse magnetoelectric effect in multiferroic heterostructure with single-phase magnetostrictive materials. Appl. Phys. Lett. 105, 172408 (2014).
27. Mandal, S.K., Sreenivasulu, G., Petrov, V.M., and Srinivasan, G.: Flexural deformation in a compositionally stepped ferrite and magnetoelectric effects in a composite with piezoelectrics. Appl. Phys. Lett. 96, 192502 (2010).
28. Laletin, U., Sreenivasulu, G., Petrov, V.M., Garg, T., Kulkarni, A.R., Venkataramani, N., and Srinivasan, G.: Hysteresis and remanence in magnetoelectric effects in functionally graded magnetostrictive-piezoelectric layered composites. Phys. Rev. B: Condens. Matter Mater. Phys. 85, 104404 (2012).
29. Jing, W.Q. and Fang, F.: Stress-induced self-biasing of magnetoelectric coupling in embedded Ni/PZT/FeNi composite. Appl. Phys. Lett. 106, 212901 (2015).
30. Kolkholm, E.: The measurement of magnetostriction in ferromagnetic thin films. IEEE Trans. Mag. 12, 819821 (1976).
31. Jahns, R., Piorra, A., Lage, E., Kirchhof, C., Meyners, D., Gugat, J.L., Krantz, M., Gerken, M., Knöchel, R., and Quandt, E.: Giant magnetoelectric effect in thin-film composites. J. Am. Ceram. Soc. 96, 16731681 (2013).
32. Lage, E., Woltering, F., Quandt, E., and Meyners, D.: Exchange biased magnetoelectric composites for vector field magnetometers. J. Appl. Phys. 113, 17C725 (2013).
33. Zhuang, X., Sing, M.L.C., Dolabdjian, C., Wang, Y., Finkel, P., Li, J., and Viehland, D.: Mechanical noise limit of a strain-coupled magneto (elasto) electric sensor operating under a magnetic or an electric field modulation. IEEE Sens. J. 15, 15751587 (2015).
34. Salzer, S., Höft, M., Knöchel, R., Hayes, P., Yarar, E., Piorra, A., and Quandt, E.: Comparison of frequency conversion techniques for magnetoelectric sensors. Procedia Eng. 120, 940943 (2015).
35. Hayes, P., Salzer, S., Reermann, J., Yarar, E., Röbisch, V., Piorra, A., Meyners, D., Höft, M., Knöchel, R., Schmidt, G., and Quandt, E.: Electrically modulated magnetoelectric sensors. Appl. Phys. Lett. 108, 182902 (2016).
36. Urs, N.O., Teliban, I., Piorra, A., Knöchel, R., Quandt, E., and McCord, J.: Origin of hysteretic magnetoelastic behavior in magnetoelectric 2–2 composites. Appl. Phys. Lett. 105, 202406 (2014).
37. Xi, H., Qian, X., Lu, M.C., Mei, L., Rupprecht, S., Yang, Q.X., and Zhang, Q.M.: A room temperature ultrasensitive magnetoelectric susceptometer for quantitative tissue iron detection. Sci. Rep. 6, 29740 (2016).
38. Deep-Brain Stimulation for Parkinson’s Disease Study Group: Deep-brain stimulation of the subthalamic nucleus of the pars interna of the globus pallidus in Parkinson’s disease. N. Engl. J. Med. 345, 956963 (2001).
39. Sternickel, K. and Braginski, A.: Biomagnetism using SQUIDs: Status and perspectives. Supercond. Sci. Technol. 19, S160S171 (2006).
40. Nowak, H.: Biomagnetic instrumentation. In Magnetism in Medicine, Andrä, W. and Nowak, H., eds. (Wiley-VCH, Berlin, Germany, 1998); pp. 88135.
41. Wikswo, J.P. Jr.: SQUID magnetometers for biomagnetism and nondestructive testing: Important questions and initial answers. IEEE Trans. Appl. Supercond. 5, 74120 (1995).
42. Wang, K., Tajima, S., Song, D., Hamada, N., Cai, C., and Uchiyama, T.: Auditory evoked field measurement using magneto-impedance sensors. J. Appl. Phys. 117, 17B306 (2015).
43. Mohri, Y., Uchiyama, T., Yamada, M., and Mohri, K.: Detection of back magneto-cardiogram for heart disease using pico-Tesla resolution amorphous wire magneto-impedance sensor. In Session 2A11a SC4: Recent Advances in Magneto-impedance Sensors (2014); p. 551.
44. Sander, T.H., Preusser, J., Mhaskar, R., Kitching, J., Trahms, L., and Knappe, S.: Magnetoencephalography with a chip-scale atomic magnetometer. Biomed. Opt. Express 3, 981990 (2012).
45. Alem, O., Sander, T.H., Mhaskar, R., LeBlanc, J., Eswaran, H., Steinhoff, U., Okada, Y., Kitching, J., Trahms, L., and Knappe, S.: Fetal magnetocardiography measurements with an array of microfabricated optically pumped magnetometers. Phys. Med. Biol. 60, 4797 (2015).
46. Schuepbach, W.M.M., Rau, J., Knudsen, K., Volkmann, J., Krack, P., Timmermann, L., Hälbig, T.D., Hesekamp, H., Navarro, S.M., Meier, N., Falk, D., Mehdorn, M., Paschen, S., Maarouf, M., Barbe, M.T., Fink, G.R., Kupsch, A., Gruber, D., Schneider, G-H., Seigneuret, E., Kistner, A., Chaynes, P., Ory-Magne, F., Brefel Courbon, C., Vesper, J., Schnitzler, A., Wojtecki, L., Houeto, J-L., Bataille, B., Maltête, D., Damier, P., Raoul, S., Sixel-Doering, F., Hellwig, D., Gharabaghi, A., Krüger, R., Pinsker, M.O., Amtage, F., Régis, J-M., Witjas, T., Thobois, S., Mertens, P., Kloss, M., Hartmann, A., Oertel, W.H., Post, B., Speelman, H., Agid, Y., Schade-Brittinger, C., and Deuschl, G.: Neurostimulation for Parkinson’s disease with early motor complications. N. Engl. J. Med. 368, 610622 (2013).
47. Deuschl, G. and Agid, Y.: Subthalamic neurostimulation for Parkinson’s disease with early fluctuations: Balancing the risks and benefits. Lancet Neurol. 12, 10251034 (2013).

Keywords

Related content

Powered by UNSILO
Type Description Title
WORD
Supplementary materials

Röbisch supplementary material
Table S1

 Word (62 KB)
62 KB

Pushing the detection limit of thin film magnetoelectric heterostructures

  • Volker Röbisch (a1), Sebastian Salzer (a2), Necdet O. Urs (a1), Jens Reermann (a2), Erdem Yarar (a1), André Piorra (a1), Christine Kirchhof (a1), Enno Lage (a1), Michael Höft (a2), Gerhard U. Schmidt (a2), Reinhard Knöchel (a2), Jeffrey McCord (a1), Eckhard Quandt (a1) and Dirk Meyners (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.