Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-26T15:35:09.226Z Has data issue: false hasContentIssue false

Pulsed laser induced self-organization by dewetting of metallic films

Published online by Cambridge University Press:  28 January 2011

H. Krishna
Affiliation:
Department of Physics, Washington University in St. Louis, St. Louis, Missouri 63130
N. Shirato
Affiliation:
Department of Material Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996
C. Favazza
Affiliation:
Department of Physics, Washington University in St. Louis, St. Louis, Missouri 63130
R. Kalyanaraman*
Affiliation:
Department of Material Science and Engineering, Department of Chemical and Biomolecular Engineering, and Sustainable Energy Education and Research Center, University of Tennessee, Knoxville, Tennessee 37996
*
a)Address all correspondence to this author. e-mail: ramki@utk.edu
Get access

Abstract

Reliable and cost-effective techniques to process surface nanoscale metallic structures with controllable and complex nanomorphologies is important toward progress in technologies related to sensing, energy harvesting, information storage, and computing. Here we discuss how pulsed laser melting and the ensuing self-organization by dewetting of ultrathin films can be utilized to fabricate various nanomorphologies in a predictable manner. Ultrathin metal films (1–100 nm) on inert substrates like SiO2 are generally unstable, with their free energy resembling that of a spinodal system. The energy rate theory of self-organization, which is based on balancing the rate of thermodynamic free energy change to the rate of energy dissipation, predicts the appearance of characteristic length scales. This is borne out in experiments of nanosecond pulsed laser melting of a variety of metal films. We review this laser-based self-organization technique with various examples from the behavior of Ag and Co metals on SiO2 substrates. Specifically, film thickness and film roughness can be used to control dewetting length scales, whereas knowledge of the intermolecular forces responsible for the free energy of the system control the type of morphology. Furthermore, novel dewetting is observed that is attributable to nanoscale heating effects resulting from the thickness-dependent pulsed laser heating. These results help elucidate the basic mechanisms of pulsed laser induced dewetting of metal films, but they also provide potential routes for cost-effective nanomanufacturing of metallic surfaces for applications in sensing, energy harvesting, and information processing.

Type
Reviews
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Meyers, M.A., Mishra, A., and Benson, D.J.: Mechanical properties of nanocrystalline materials. Prog. Mater. Sci. 51, 427–556 (2006).CrossRefGoogle Scholar
2.Kelly, K.L., Coronado, E., Zhao, L.L., and Schatz, G.C.: The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment. J. Phys. Chem. 107, 668–677 (2003).CrossRefGoogle Scholar
3.Xia, Y. and Halas, J.N.: Synthesis and surface plasmonic properties of metallic nanostructures. MRS Bull. 30, 338 (2005).CrossRefGoogle Scholar
4.Maier, S., Kik, P.G., and Atwater, H.A.: Observation of couple plasmon–polariton modes in Au nanoparticle chain waveguide of different length: Estimation of waveguide losses. Appl. Phys. Lett. 81, 1714–16 (2002).CrossRefGoogle Scholar
5.Leslie-Pelecky, D.L. and Rieke, R.D.: Magnetic properties of nanostructured materials. Chem. Mater. 8, 1770–1783 (1996).CrossRefGoogle Scholar
6.Kittel, C.: Rev. Mod. Phys. 21, 541 (1949).CrossRefGoogle Scholar
7.Kittel, C.: Phys. Rev. 70 965 (1946).CrossRefGoogle Scholar
8.González-Díaz, J.B., García-Martín, A., García-Martín, J.M., Cebollada, A., Armelles, G., Sepílveda, B., Alaverdyan, Y., and Káll, M.: Plasmonic AU/CO/AU nanosandwiches with enhanced magneto-optical activity. Small. 4, 202–205 (2008).Google ScholarPubMed
9.Drexler, K.: Molecular engineering: An approach of the development of general capabilities for molecular manipulation. Nat. Acad. of Sci. 78, 5275–5278 (1981).CrossRefGoogle ScholarPubMed
10.Drexler, K. and Foster, J.S.: Synthetic tips. Nature 343, 600–604 (1990).CrossRefGoogle ScholarPubMed
11.Gleiter, H.: Nanostructured materials: Basic concepts and microstructure. Acta. Mater. 48, 1–29 (2000).CrossRefGoogle Scholar
12.Inomata, K. and Saito, Y.: Spin-dependent tunneling through layered ferromagnetic nanoparticles. Appl. Phys. Lett. 73, 1143–1145 (1998).CrossRefGoogle Scholar
13.Stahl, J., Debe, M., and Coleman, P.: Enhanced bioadsorption characteristics of a uniquely nanostructured thin film. J. Vac. Sci. Techno. A, 14, 1761–1764 (1996).CrossRefGoogle Scholar
14.Shtanski, D., Kulinich, S., Levashov, E., and Moore, J.: Structure and physical–mechanical properties of nanostructured thin films. Phys. Solid. State. 45, 1177–1184 (2003).CrossRefGoogle Scholar
15.Quinten, M., Leitner, A., Krenn, J., and Aussenegg, F.: Electromagnetic energy transport via linear chains of silver nanoparticles. Opt. Lett. 23, 1331 (1998).CrossRefGoogle ScholarPubMed
16.Willets, K. and Van Duyne, R.P.: Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem. 58, 267 (2007).CrossRefGoogle ScholarPubMed
17.Fleischmann, M., Hendra, P.J., and MacQuillan, A.: Raman spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett. 26, 163–168 (1974).CrossRefGoogle Scholar
18.Chou, S.Y., Krauss, P.R., and Kong, L.: J. Appl. Phys. 79, 6101 (1996).CrossRefGoogle Scholar
19.New, R.M.H., Pease, R.F.W., and White, R.L.: J. Vac. Sci. Technol. B 12, 3196 (1994).CrossRefGoogle Scholar
20.Krauss, P.R., Fischer, P.B., and Chou, S.Y.: J. Vac. Sci. Technol. B 12, 3639 (1994).CrossRefGoogle Scholar
21.Chou, S.Y., Krauss, P.R., and Renstrom, P.J.: J. Vac. Sci. Technol. B 14, 4129 (1996).CrossRefGoogle Scholar
22.Todorovic, M., Schuttz, S., Wong, J., and Scherer, A.: Appl. Phys. Lett. 74, 2516 (1999).CrossRefGoogle Scholar
23.Salerno, M., Krenn, J.R., Lamprecht, B., Schider, G., Ditlbacher, H., Felidj, N., Leitner, A., and Aussenegg, F.R.: Opto-Electron. Rev. 10, 217 (2002).Google Scholar
24.Molday, R.S. and Mackenzie, D.: J. Immunol. Methods 52, 353 (1982).CrossRefGoogle Scholar
25.Jordan, A., Scholz, R., Wust, P., Schirra, H., Schiestel, T., Schmidt, H., and Felix, R.: J. Magn. Magn. Mater. 194, 185 (1999).CrossRefGoogle Scholar
26.Ross, F., Tersoff, J., and Tromp, R.: Coarsening of self-assembled Ge quantum dots on Si(001). Phys. Rev. Lett. 80, 984–19 (1998).CrossRefGoogle Scholar
27.Kondo, S. and Asal, R.: A reaction-diffusion wave on the skin of the marine angelfish Pomacanthus. Nature 376, 765–768 (1993).CrossRefGoogle Scholar
28.Favazza, C., Kalyanaraman, R., and Sureshkumar, R.: Robust nanopatterning by laser-induced dewetting of metal nanofilms. Nanotechnology 17, 4229–42 (2006).CrossRefGoogle ScholarPubMed
29.Ashton, A., Brad Murray, A., and Arnault, O.: Formation of coastline features by large-scale instabilities induced by high-angle waves. Nature, 414, 296–300 (2001).CrossRefGoogle ScholarPubMed
30.Vrij, A.: Possible mechanism for the spontaneous rupture of thin, free liquid films. Discuss. Faraday Soc. 42, 23–27 (1966).CrossRefGoogle Scholar
31.Vrij, A. and Overbeek, J.T.G.: Rupture of thin liquid films due to spontaneous fluctuations in thickness. J. Am. Chem. Soc. 90, 3074–30 (1968).CrossRefGoogle Scholar
32.Reiter, G.: Phys. Rev. Lett. 68, 75 (1992).CrossRefGoogle Scholar
33.Thiele, J-U., Folks, L., Toney, M.F., and Weller, D.K.: Perpendicular magnetic anisotropy and magnetic domain structure in sputtered epitaxial fept (001) l1[sub 0] films. J. Appl. Phys. 84, 5686–5692 (1998).CrossRefGoogle Scholar
34.Stange, T. and Evans, D.: Nucleation and growth of defects leading to dewetting of thin polymer films. Langmuir 13, 4459–4465 (1997).CrossRefGoogle Scholar
35.Thiele, U., Velarde, M.G., and Neuffer, K.: Dewetting: film rupture by nucleation in the spinodal regime. Phys. Rev. Lett. 87, 16104 (2001).CrossRefGoogle ScholarPubMed
36.Sharma, A. and Khanna, R.: Pattern formation in thin liquid films. Phys. Rev. Lett. 80,(1998).Google Scholar
37.Sharma, A. and Ruckenstein, E.: J. Colloid Interface Sci. 106, 12 (1985).CrossRefGoogle Scholar
38.Sharma, A. and Ruckenstein, E.: Finite-amplitude instability of thin free and wetting films: prediction of lifetimes. Langmuir 2, 480–494 (1986).CrossRefGoogle Scholar
39.Pretorius, R., Harris, J., and Nicolet, M-A.: Reaction of thin metal films with SiO2 substrates. Solid. State. Electron. 21, 667–675 (1978).CrossRefGoogle Scholar
40.Ho, L.H., Nguyen, T., Chang, J.C., Machesney, B., and Geiss, P.: Evidence of Co/SiO2 reaction during rapid thermal annealing. Mater. Res. 8, 467–472 (1993).CrossRefGoogle Scholar
41.Favazza, C., Kalyanaraman, R., and Sureshkumar, R.: Dynamics of ultrathin metal films on amorphous substrates under fast thermal processing. J. Appl. Phys. 102, 104308 (2007).CrossRefGoogle Scholar
42.Hu, X., Cahill, D., and Averback, R.: Nanoscale pattern formation in Pt thin films due to ion-beam-induced dewetting. Appl. Phys. Lett. 76, 3215–32 (2000).Google Scholar
43.Hu, X., Cahill, D.G., and Averback, R.S.: Dewetting and nanopattern formation of thin Pt films on SiO2 induced by ion beam irradiation. J. Appl. Phys., 89, 7777–7783, (2001).CrossRefGoogle Scholar
44.Bischof, J., Reimmuth, M., Boneberg, J., Herminghaus, H., Palberg, T., and Leiderer, P.: In Proceedings of SPIE. 2777, 1996; p. 119Google Scholar
45.Herminghaus, S., Jacobs, K., Mecke, K., Bischof, J., Fery, A., Ibn-Elhaj, M., and Schlagowski, S.: Spinodal dewetting in liquid crystal and liquid metal films. Science, 282, 916–919 (1998).CrossRefGoogle ScholarPubMed
46.Henley, S.J., Carey, J.D., and Silva, S.R.P.: Pulsed-laser-induced nanoscale island formation in thin metal-on-oxide films. Phys. Rev. B 72, 195408–I–195408–10 (2005).CrossRefGoogle Scholar
47.Favazza, C., Trice, J., Gangopadhyay, A., Garcia, H., Sureshkumar, R., and Kalyanaraman, R.: Nanoparticle ordering by dewetting of Co on SiO2. J. Electron. Mater., 35, 1618–20 (2006).CrossRefGoogle Scholar
48.Favazza, C., Trice, J., Krishna, H., Kalyanaraman, R., and Sureshkumar, R.: Laser-induced short- and long-range ordering of Co nanoparticles on SiO2. Appl. Phys. Lett. 88, 1531181–1531183 (2006).CrossRefGoogle Scholar
49.Favazza, C., Trice, J., Kalyanaraman, R., and Sureshkumars, R.: Self-organized metal nanostructures through laser-interference driven thermocapillary convection. Appl. Phys. Lett. 91, 043105 (2007).CrossRefGoogle Scholar
50.Trice, J., Favazza, C., Thomas, D., Garcia, H., Kalyanaraman, R., and Sureshkumar, R.: Novel self-organization mechanism in ultrathin liquid films: Theory and experiment. Phys. Rev. Lett., 101, 017802 (2008).CrossRefGoogle ScholarPubMed
51.Krishna, H., Miller, C., Longstreth-Spoor, L., Nussinov, Z., Gangopadhyay, A.K., and Kalyanaraman, R.: Unusual size-dependent magnetization in near hemispherical Co nanomagnets on sio2 from fast pulsed laser processing. J. Appl. Phys. 103, 073902 (2008).CrossRefGoogle Scholar
52.Krishna, H., Strader, J., Gangopadhyay, A.K., Kalyanaraman, R.: Nanosecond laser-induced synthesis of nanoparticles with tailorable magnetic anisotropy, J. Mag. Mag. Mat., 323, p 356–362 (2011).CrossRefGoogle Scholar
53.Cahn, J.W.: Phase separation by spinodal decomposition in isotropic systems. J. Chem. Phys. 62, 93–99 (1965).CrossRefGoogle Scholar
54.Israelachvili, J.: Intermolecular and Surface Forces. (Academic Press, London, 1992).Google Scholar
55.Parsegians, V.A.: Van der Waals Forces: A Handbook for Biologists, Chemists, Engineers, and Physicists (Cambridge University Press, 2006), New York.Google Scholar
56.Krishna, H., Sachan, R., Strader, J., Favazza, C., Khenner, M., and Kalyanaraman, R.: Thickness-dependent spontaneous dewetting morphology of ultrathin Ag films. Nanotechnology, 21, (2010).Google ScholarPubMed
57.Sharma, A.: Relationship of thin film stability and morphology to macroscopic parameters of wetting in the apolar and polar systems. Langmuir, 9, 861–869 (1993).CrossRefGoogle Scholar
58.Seemann, R., Herminghaus, S., and Jacobs, K.: Dewetting patterns and molecular forces. Phys. Rev. Lett. 86, 5534–5537 (2001).CrossRefGoogle ScholarPubMed
59.Becker, J., Grun, G., Seeman, R., Mantz, H., Jacobs, K., Mecke, K., and Blossey, R.: Complex dewetting scenarios captured by thin-film models. Nat. Mater. 2, 59 (2003).CrossRefGoogle ScholarPubMed
60.Trice, J., Kalyanaraman, R., and Sureshkumar, R.: Computational modeling of laser-induced self-organization in nanoscopic metal films for predictive nanomanufacturing. In Instrumentation, Metrology, and Standards for Nanomanufacturing Postek, M.T. and Allgair, J.A., eds. Proceedings of SPIE, p6648, SPIE, New York, 2007 p. 66480K.CrossRefGoogle Scholar
61.de Gennes, P., Brochard-Wyart, F., and Quere, D.: Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves (Springer, New York, 2004).CrossRefGoogle Scholar
62.Krishna, H., Shirato, N., Favazza, C., and Kalyanaraman, R.: Energy driven self-organization in nanoscale metallic liquid films. Phys. Chem. Chem. Phys. 11, 8136–8143 (2009).CrossRefGoogle ScholarPubMed
63.de Gennes, P.-G.: The dynamics of a spreading droplet. C.R. Acad. Paris, 298, 111–115 (1984).Google Scholar
64.Kondic, L.: Instabilitites in gravity driven flow of thin fluid films. SIAM Rev. 45, 95–115 (2003).CrossRefGoogle Scholar
65.Shirato, N., Krishna, H., Kalyanaraman, R.: Thermodynamic model for the dewetting instability in ultrathin films. J. Appl. Phys. 108, 024313 (2010).CrossRefGoogle Scholar
66.Trice, J., Thomas, D., Favazza, C., Sureshkumar, R., and Kalyanaraman, R.: Investigation of laser-induced dewetting in nanoscopic Co films: Experiments and modeling of thermal behavior. Phys. Rev. B 75, 235439 (2007).CrossRefGoogle Scholar
67.Reiter, G.: Unstable thin polymer films: Rupture and dewetting processes. Langmuir 9, 1344–1351 (1993).CrossRefGoogle Scholar
68.Xie, R., Karim, A., Douglas, J., Han, C., and Weiss, R.: Spinodal dewetting of thin polymer films. Phys. Rev. Lett. 81, 1251–1254 (1998).CrossRefGoogle Scholar
69.Seemann, R., Herminghaus, S., and Jacobs, K.: Gaining control of pattern formation of dewetting liquid films. J. Phys. Condensi. Matter. 13, 4925–4938 (2001).CrossRefGoogle Scholar
70.Mitlin, V.: On dewetting conditions. Colloids Surf. A 89, 97–101 (1994).CrossRefGoogle Scholar
71.Maissel, L. and Glang, R., eds: Handbook of Thin FilmTechnology, (McGraw–Hill, New York, 1970); Chap. 8.Google Scholar
72.Heavens, O.S.: Optical Properties of Thin Solid. (Butterworth, New York, 1955); pp. 76–77.Google Scholar
73.Yaws, C.L., ed.: Chemical Properties Handbook (McGraw–Hill, New York, 1999).Google Scholar
74.Lu, H.M. and Jiang, Q.: Surface tension and its temperature coefficient for liquid metals. J. Phys. Chem. B 109, 15463–15468 (2005).CrossRefGoogle ScholarPubMed