Hostname: page-component-7c8c6479df-ws8qp Total loading time: 0 Render date: 2024-03-29T13:25:56.576Z Has data issue: false hasContentIssue false

Processing and properties of ferroelectric relaxor lead scandium tantalate Pb(Sc1/2Ta1/2)O3 thin films

Published online by Cambridge University Press:  03 March 2011

K. Brinkman*
Affiliation:
Ecole Polytechnique Fédérale de Lausanne (EPFL), Ceramics Laboratory, CH-1015 Lausanne, Switzerland
Y. Wang
Affiliation:
Ecole Polytechnique Fédérale de Lausanne (EPFL), Ceramics Laboratory, CH-1015 Lausanne, Switzerland
M. Cantoni
Affiliation:
Ecole Polytechnique Fédérale de Lausanne (EPFL), Ceramics Laboratory, CH-1015 Lausanne, Switzerland
D. Su
Affiliation:
Ecole Polytechnique Fédérale de Lausanne (EPFL), Ceramics Laboratory, CH-1015 Lausanne, Switzerland
N. Setter
Affiliation:
Ecole Polytechnique Fédérale de Lausanne (EPFL), Ceramics Laboratory, CH-1015 Lausanne, Switzerland
P.K. Petrov
Affiliation:
Centre for Physical Electronics and Materials, London South Bank University, London SE1 0AA, United Kingdom
*
a) Address all correspondence to this author. Present address: AIST, Tsukuba Central 5, Tsukuba 305-8565 Japan. e-mail: Kyle.brinkman@a3.epfl.ch
Get access

Abstract

Thin films of Pb(Sc1/2Ta1/2)O3 (PST) were fabricated using an optimized chemical solution deposition procedure involving the de-hydration of scandium acetate and the addition of up to 30% excess lead in solution. The choice of substrate was found to impact the thermal induced stress in the films as confirmed by wafer bending and in-plane grazing angle x-ray diffraction measurements. The presence of either a compressive or a tensile in-plane stress led to a reduction in the temperature of the dielectric maximum, whereas the value of the dielectric maximum remained relatively unchanged; its value reduced by an order of magnitude compared with ceramic samples. It is concluded that mechanical stress alone is not the sole factor in the reduction of PST thin film permittivity. Microstructural features resulting from processing induced defects or an incomplete transformation to the relaxor state may be responsible for this commonly observed phenomenon.

Type
Articles
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Park, S-E. and Shrout, T.S.: Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals. J. Appl. Phys. 82, 1804 (1997).CrossRefGoogle Scholar
2Kighelman, Z., Damjanovic, D., and Setter, N.: Electromechanical properties and self-polarization in relaxor Pb(Mg1/3Nb2/3)O3 thin films. J. Appl. Phys. 89, 1393 (2001).CrossRefGoogle Scholar
3Francis, L., Oh, Y., and Payne, D.: Sol-gel processing and properties of lead magnesium niobate powders and thin-layers. J. Mater. Sci. 25, 5007 (1990).CrossRefGoogle Scholar
4Park, J. and Trolier-McKinstry, S.: Dependence of dielectric and piezoelectric properties on film thickness for highly 100-oriented lead magnesium niobate-lead titanate (70/30) thin films. J. Mater. Res. 16, 268 (2001).CrossRefGoogle Scholar
5Kuh, B.J., Choo, W.K., Brinkman, K., Damjanovic, D., and Setter, N.: Dielectric and piezoelectric properties of relaxor Pb(Sc1/2Nb1/2)O3 thin films. Appl. Phys. Lett. 83, 1614 (2003).CrossRefGoogle Scholar
6Tyunina, M. and Levoska, J.: Dielectric nonlinearity in relaxor and ferroelectric thin films of chemically ordered PbSc0.5Nb0.5O3. Appl. Phys. Lett. 85, 4720 (2004).CrossRefGoogle Scholar
7Liu, D. and Payne, D.: Lower temperature crystallization and ordering in sol-gel derived Pb(Sc0.5Ta0.5)O3 powders and thin-layers. J. Appl. Phys. 77, 3361 (1995).CrossRefGoogle Scholar
8Huang, Z., Donohue, P., Zhang, Q., Williams, D., Anthony, C., Todd, M., and Whatmore, R.: Comparative studies of PST thin films as prepared by sol-gel, LDCVD and sputtering techniques. Integrated Ferroelectrics 45, 79 (2002).CrossRefGoogle Scholar
9Brinkman, K., Cantoni, M., Tagantsev, A., Muralt, P., and Setter, N.: Dielectric response and structural features of Pb(Sc1/2Ta1/2)O3 (PST) sol-gel derived thin films. J. Electroceram. 13, 105 (2004).Google Scholar
10Kamba, S., Berta, M., Kempa, M., Petzelt, J., Brinkman, K., and Setter, N.: Far-infrared soft-mode behavior in Pb(Sc1/2Ta1/2)O3 thin films. J. Appl. Phys. 98, 074103 (2005).CrossRefGoogle Scholar
11Kamba, S., Kempa, M., Bovtun, V., Petzelt, J., Brinkman, K., and Setter, N.: Soft and central mode behaviour in Pb(Mg1/3Nb2/3)O3 relaxor ferroelectric. J. Phys.: Condens. Matter 17, 3965 (2005).Google Scholar
12Ramesh, R., Aggarwa, S., and Auciello, O.: Science and technology of ferroelectric films and heterostructures for non-volatile ferroelectric memories. Mater. Sci. Eng. 32, 191 (2001).CrossRefGoogle Scholar
13Nagaraj, B., Aggarwal, S., Song, T.K., Sawhney, T., and Ramesh, R.: Leakage current mechanisms in lead-based thin film ferroelectric capacitors. Phys. Rev. B 59, 16022 (1999).CrossRefGoogle Scholar
14Dawber, M., Rabe, K., and Scott, J.: Physics of thin-film ferroelectric oxides. Rev. Mod. Phys. 77, 1083 (2005).CrossRefGoogle Scholar
15Ren, X.: Large electric-field-induced strain in ferroelectric crystals by point-defect-mediated reversible domain switching. Nat. Mater. 3, 91 (2004).CrossRefGoogle ScholarPubMed
16Li, B., Li, G., Yin, Q., Zhu, Z., Ding, A., and Cao, W.: Pinning and depinning mechanism of defect dipoles in PMN-PZT ceramics. J. Phys. D: Appl. Phys. 38, 1107 (2005).CrossRefGoogle Scholar
17Agronin, A., Rosenwaks, Y., and Rosenman, G.: Direct observation of pinning centers in ferroelectrics. Appl. Phys. Lett. 88, 072911 (2006).CrossRefGoogle Scholar
18Schwartz, R., Voigt, J., Tuttle, B., Payne, D., Reichert, T., and DaSalla, R.: Comments on the effects of solution precursor characteristics and thermal processing conditions on the crystallization behavior of sol-gel derived lead zirconate titanate thin films. J. Mater. Res. 12, 444 (1997).CrossRefGoogle Scholar
19Chang, J. and Desu, S.: Effects of dopants in PZT films. J. Mater. Res. 9, 955 (1994).CrossRefGoogle Scholar
20Whatmore, R.W., Patel, A., Shorrocks, N., and Ainger, F.W.: Ferroelectric materials for thermal IR sensors state-of the-art and perspectives. Ferroelectrics 104, 269 (1990).CrossRefGoogle Scholar
21Bratkovsky, A. and Levanyuk, A.: Smearing of phase transition due to a surface or a bulk inhomogeneity in ferroelectric nanostructures. Phys. Rev. Lett. 94, 107601 (2005).CrossRefGoogle ScholarPubMed
22Brinkman, K., Cherman, V., Su, D., Tagantsev, A., and Setter, N.: In-plane versus out-of-plane dielectric response in the thin-film relaxor Pb(Sc1/2Ta1/2)O3. Phys. Rev. B 73, 214112 (2006).CrossRefGoogle Scholar
23Stenger, C. and Burggraaf, A.: Order-disorder reactions in the ferroelectric perovskites Pb(Sc1/2Ta1/2)O3 and Pb(Sc1/2Nb1/2)O3 kinetics of the ordering process. Phys. Status Solidi 61, 275 (1980).CrossRefGoogle Scholar
24Setter, N. and Cross, E.: The role of B-site cation disorder in diffuse phase-transition behavior of perovskite ferroelectrics. J. Appl. Phys. 51, 4356 (1980).CrossRefGoogle Scholar
25Brinkman, K., Tagantsev, A., Muralt, P., and Setter, N.: Self-polarization in Pb(Sc1/2Ta1/2)O3 thin films: Impact on dielectric and piezoelectric response. Jpn. J. Appl. Phys. 45,7288 (2006).CrossRefGoogle Scholar
26Chu, F.: The ferroelectric phase transition in complex perkovskite relaxors. Ph.D. Thesis, Swiss Federal Institute of Technology EPFL, Lausanne, Switzerland (1994).Google Scholar
27Chu, F., Setter, N., and Tagantsev, A.: The spontaneous relaxor-ferroelectric transition of Pb(Sc1/2Ta1/2)O3. J. Appl. Phys. 74, 5129 (1993).CrossRefGoogle Scholar
28Reaney, I., Barber, D., and Watton, R.: TEM studies of rf magnetron-sputtered thin films. J. Mater. Sci.-Mater. Electron. 3, 51 (1992).CrossRefGoogle Scholar
29Whatmore, R., Huang, Z., and Todd, M.: Sputtered lead scandium tantalate thin films: Pb+4 in B sites in the perovskite structure. J. Appl. Phys. 82, 5686 (1997).CrossRefGoogle Scholar
30Bjormander, C., Sreenivas, K., Grishin, A., and Rao, K.: Pyroelectric Pb(Sc0.5Ta0.5)O3/Y1Ba2Cu3O7−x thin film heterostructures. Appl. Phys. Lett. 67, 58 (1995).CrossRefGoogle Scholar
31Huang, Z., Battat, J., Donohue, P., Todd, M.A., and Whatmore, R.W.: On the phase transformation kinetics in lead scandium tantalate thin films. J. Phys. D: Appl. Phys. 36, 3039 (2003).CrossRefGoogle Scholar
32Whatmore, R., Patel, A., and Shorrocks, N.: Physicochemical properties of sol-gel derived lead scandium tantalate Pb(Sc0.5Ta0.5)O3 thin-films. Ferroelectrics 134, 343 (1992).Google Scholar
33Liu, D. and Payne, D.: Lower temperature crystallization and ordering in sol-gel derived Pb(Sc0.5Ta0.5)O3 powders and thin layers. J. Appl. Phys. 77, 3361 (1995).CrossRefGoogle Scholar
34Fuflyigin, V., Salley, E., Vakhutinsky, P., Osinsky, A., Zhao, J., Gergis, I., and Whiteaker, K.: Freestanding films of Pb(Sc0.5Ta0.5)O3 for uncooled infrared detectors. Appl. Phys. Lett. 78, 365 (2001).CrossRefGoogle Scholar
35Pertsev, N.A., Zembilgotov, A.G., and Tagantsev, A.K.: Effect of mechanical boundary conditions on phase diagrams of epitaxial ferroelectric thin films. Phys. Rev. Lett. 80, 1988 (1998).CrossRefGoogle Scholar
36Nagarajan, V., Alpay, S., Ganpule, C., Nagaraj, B., Aggarwal, S., Williams, E., Roytburd, A., and Ramesh, R.: Role of substrate on the dielectric and piezoelectric behavior of epitaxial lead magnesium niobate-lead titanate relaxor thin films. Appl. Phys. Lett. 77, 438 (2000).CrossRefGoogle Scholar
37Catalan, G., Corbett, M., Bowman, R., and Gregg, J.: Effect of thermal expansion mismatch on the dielectric peak temperature of thin film relaxors. J. Appl. Phys. 91, 2295 (2002).CrossRefGoogle Scholar
38Seifert, A., Ledermann, N., Hiboux, S., Baborowski, J., Muralt, P., and Setter, N.: Processing optimization of solution derived Pb(Zr1−xTix)O3 thin films for piezoelectric applications. Integrated Ferroelectrics 35, 1889 (2001).CrossRefGoogle Scholar
39Petrov, P.K., Sarma, K., and Alford, N.M.: Evaluation of residual stress in thin ferroelectric films using grazing incident x-ray diffraction. Integrated Ferroelectrics 63, 695 (2004).CrossRefGoogle Scholar
40Vendik, O., Zubko, S., and Nikolski, M.: Modeling and calculation of the capacitance of a planar capacitor containing a ferroelectric thin film. Tech. Phys. 44, 349 (1999).CrossRefGoogle Scholar
41Parola, S., Khem, R., Cornu, D., Chassagneux, F., Lecocq, S., Kighelman, Z., and Setter, N.: Insights in the sol-gel processing of Pb(Mg1/3Nb2/3)O3. The synthesis and crown structure of a new lead magnesium cluster: Pb6Mg12(μ-OAc)62,n2-OAc)183, n2-OC2H4OPri)12. Inorg. Chem. Commun. 5, 316 (2002).CrossRefGoogle Scholar
42Malic, B., Kosec, M., Arcon, I., and Kodre, A.: Homogeneity issues in chemical solution deposition of Pb(Zr,Ti)O3 thin films. J. Eur. Ceram. Soc. 25, 2241 (2005).CrossRefGoogle Scholar
43Liu, D., Ma, L., Payne, D., and Viehland, D.: Sol-gel synthesis of Pb(Sc0.5Ta0.5)O3 powders and thin-layers. Mater. Lett. 17, 319 (1993).Google Scholar
44Malic, B., Arcon, I., Kodre, A., and Kosec, M.: EXAFS study of amorphous precursors for Pb(Zr,Ti)O3 ceramics. J. Sol.-Gel Sci. Technol. 16, 135 (1999).CrossRefGoogle Scholar
45Malic, B., Kosec, M., Smolej, K., and Stavber, S.: Effect of precursor type on the microstructure of PbTiO3 thin films. J. Eur. Ceram. Soc. 19, 1345 (1999).CrossRefGoogle Scholar
46Boyle, T., Dimos, D., Schwartz, R., Alam, T., Sinclair, M., and Bucheit, C.: Aging characteristics of a hybrid sol-gel Pb(Zr,Ti)O3 precursor solution. J. Mater. Res. 12, 1022 (1997).CrossRefGoogle Scholar
47Seifert, A., Lange, F., and Speck, J.: Epitaxial-growth of PbTiO3 thin films on (001) SrTiO3 from solution precursors. J. Mater. Res. 10, 680 (1995).CrossRefGoogle Scholar
48Muralt, P., Maeder, T., Sagalowicz, L., Hiboux, S., Scalese, S., Naumovic, D., Agostino, R., Xanthopoulos, N., Mathieu, H., Patthey, L., and Bullock, E.: Texture control of PbTiO3 and Pb(Zr,Ti)O3 thin films with TiO2 seeding. J. Appl. Phys. 83, 3835 (1998).CrossRefGoogle Scholar
49Kighelman, Z.: Ph.D. Thesis. Swiss Federal Institute of Technology EPFL, Lausanne, Switzerland (2001).Google Scholar
50Ostapchuk, T., Petzelt, J., Zelezny, V., Pashkin, A., Pokorny, J., Drbohlav, I., Kuzel, R., Rafaja, D., Gorshunov, B., Dressel, M., Ohly, C., Hoffman-Eifert, S., and Waser, R.: Origin of soft-mode stiffening and reduced dielectric response in SrTiO3 thin films. Phys. Rev. B 66, 235406 (2002).CrossRefGoogle Scholar